Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[R-package] added tests on LGBM_BoosterResetTrainingData_R #3020

Merged
merged 1 commit into from
May 11, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions R-package/tests/testthat/test_lgb.Booster.R
Original file line number Diff line number Diff line change
Expand Up @@ -311,3 +311,66 @@ test_that("Booster$rollback_one_iter() should work as expected", {
logloss <- bst$eval_train()[[1L]][["value"]]
expect_equal(logloss, 0.027915146)
})

test_that("Booster$update() passing a train_set works as expected", {
set.seed(708L)
data(agaricus.train, package = "lightgbm")
nrounds <- 2L

# train with 2 rounds and then update
bst <- lightgbm(
data = as.matrix(agaricus.train$data)
, label = agaricus.train$label
, num_leaves = 4L
, learning_rate = 1.0
, nrounds = nrounds
, objective = "binary"
)
expect_true(lgb.is.Booster(bst))
expect_equal(bst$current_iter(), nrounds)
bst$update(
train_set = Dataset$new(
data = agaricus.train$data
, label = agaricus.train$label
)
)
expect_true(lgb.is.Booster(bst))
expect_equal(bst$current_iter(), nrounds + 1L)

# train with 3 rounds directlry
bst2 <- lightgbm(
data = as.matrix(agaricus.train$data)
, label = agaricus.train$label
, num_leaves = 4L
, learning_rate = 1.0
, nrounds = nrounds + 1L
, objective = "binary"
)
expect_true(lgb.is.Booster(bst2))
expect_equal(bst2$current_iter(), nrounds + 1L)

# model with 2 rounds + 1 update should be identical to 3 rounds
expect_equal(bst2$eval_train()[[1L]][["value"]], 0.04806585)
expect_equal(bst$eval_train()[[1L]][["value"]], bst2$eval_train()[[1L]][["value"]])
})

test_that("Booster$update() throws an informative error if you provide a non-Dataset to update()", {
set.seed(708L)
data(agaricus.train, package = "lightgbm")
nrounds <- 2L

# train with 2 rounds and then update
bst <- lightgbm(
data = as.matrix(agaricus.train$data)
, label = agaricus.train$label
, num_leaves = 4L
, learning_rate = 1.0
, nrounds = nrounds
, objective = "binary"
)
expect_error({
bst$update(
train_set = data.frame(x = rnorm(10L))
)
}, regexp = "lgb.Booster.update: Only can use lgb.Dataset", fixed = TRUE)
})