-
Notifications
You must be signed in to change notification settings - Fork 3.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[python] [dask] add initial dask integration (#3515)
* migrated implementation from dask/dask-lightgbm * relaxed tests * tests skipped in case that MPI is used * fixed python 2.7 import + tests disabled on windows * python < 3.6 is not supported in tests * tests enabled only for linux * tests disabled for mpi interface * dask version pinned to >= 2.0 * added @jameslamb as code owner * added missing pandas dependency * code refactoring, removed code duplication - lightgbm.dask.LGBMClassifier.fit is the same as lightgbm.dask.LGBMRegressor.fit * fixed refactoring * code deduplication - fit method moved into mixin class * fixed CODEOWNERS * removed unnecessary import * skip the module execution on python < 3.6 and on platform different than linux. * removed skip for python < 3.6 * review comments * removed noqa, renamed API classes, renamed local variables
- Loading branch information
Showing
5 changed files
with
505 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Validating CODEOWNERS rules …
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,280 @@ | ||
# coding: utf-8 | ||
"""Distributed training with LightGBM and Dask.distributed. | ||
This module enables you to perform distributed training with LightGBM on Dask.Array and Dask.DataFrame collections. | ||
It is based on dask-xgboost package. | ||
""" | ||
import logging | ||
from collections import defaultdict | ||
from urllib.parse import urlparse | ||
|
||
import numpy as np | ||
import pandas as pd | ||
from dask import array as da | ||
from dask import dataframe as dd | ||
from dask import delayed | ||
from dask.distributed import default_client, get_worker, wait | ||
|
||
from .basic import _LIB, _safe_call | ||
from .sklearn import LGBMClassifier, LGBMRegressor | ||
|
||
import scipy.sparse as ss | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
def _parse_host_port(address): | ||
parsed = urlparse(address) | ||
return parsed.hostname, parsed.port | ||
|
||
|
||
def _build_network_params(worker_addresses, local_worker_ip, local_listen_port, time_out): | ||
"""Build network parameters suitable for LightGBM C backend. | ||
Parameters | ||
---------- | ||
worker_addresses : iterable of str - collection of worker addresses in `<protocol>://<host>:port` format | ||
local_worker_ip : str | ||
local_listen_port : int | ||
time_out : int | ||
Returns | ||
------- | ||
params: dict | ||
""" | ||
addr_port_map = {addr: (local_listen_port + i) for i, addr in enumerate(worker_addresses)} | ||
params = { | ||
'machines': ','.join('%s:%d' % (_parse_host_port(addr)[0], port) for addr, port in addr_port_map.items()), | ||
'local_listen_port': addr_port_map[local_worker_ip], | ||
'time_out': time_out, | ||
'num_machines': len(addr_port_map) | ||
} | ||
return params | ||
|
||
|
||
def _concat(seq): | ||
if isinstance(seq[0], np.ndarray): | ||
return np.concatenate(seq, axis=0) | ||
elif isinstance(seq[0], (pd.DataFrame, pd.Series)): | ||
return pd.concat(seq, axis=0) | ||
elif isinstance(seq[0], ss.spmatrix): | ||
return ss.vstack(seq, format='csr') | ||
else: | ||
raise TypeError('Data must be one of: numpy arrays, pandas dataframes, sparse matrices (from scipy). Got %s.' % str(type(seq[0]))) | ||
|
||
|
||
def _train_part(params, model_factory, list_of_parts, worker_addresses, return_model, local_listen_port=12400, | ||
time_out=120, **kwargs): | ||
network_params = _build_network_params(worker_addresses, get_worker().address, local_listen_port, time_out) | ||
params.update(network_params) | ||
|
||
# Concatenate many parts into one | ||
parts = tuple(zip(*list_of_parts)) | ||
data = _concat(parts[0]) | ||
label = _concat(parts[1]) | ||
weight = _concat(parts[2]) if len(parts) == 3 else None | ||
|
||
try: | ||
model = model_factory(**params) | ||
model.fit(data, label, sample_weight=weight, **kwargs) | ||
finally: | ||
_safe_call(_LIB.LGBM_NetworkFree()) | ||
|
||
return model if return_model else None | ||
|
||
|
||
def _split_to_parts(data, is_matrix): | ||
parts = data.to_delayed() | ||
if isinstance(parts, np.ndarray): | ||
assert (parts.shape[1] == 1) if is_matrix else (parts.ndim == 1 or parts.shape[1] == 1) | ||
parts = parts.flatten().tolist() | ||
return parts | ||
|
||
|
||
def _train(client, data, label, params, model_factory, weight=None, **kwargs): | ||
"""Inner train routine. | ||
Parameters | ||
---------- | ||
client: dask.Client - client | ||
X : dask array of shape = [n_samples, n_features] | ||
Input feature matrix. | ||
y : dask array of shape = [n_samples] | ||
The target values (class labels in classification, real numbers in regression). | ||
params : dict | ||
model_factory : lightgbm.LGBMClassifier or lightgbm.LGBMRegressor class | ||
sample_weight : array-like of shape = [n_samples] or None, optional (default=None) | ||
Weights of training data. | ||
""" | ||
# Split arrays/dataframes into parts. Arrange parts into tuples to enforce co-locality | ||
data_parts = _split_to_parts(data, is_matrix=True) | ||
label_parts = _split_to_parts(label, is_matrix=False) | ||
if weight is None: | ||
parts = list(map(delayed, zip(data_parts, label_parts))) | ||
else: | ||
weight_parts = _split_to_parts(weight, is_matrix=False) | ||
parts = list(map(delayed, zip(data_parts, label_parts, weight_parts))) | ||
|
||
# Start computation in the background | ||
parts = client.compute(parts) | ||
wait(parts) | ||
|
||
for part in parts: | ||
if part.status == 'error': | ||
return part # trigger error locally | ||
|
||
# Find locations of all parts and map them to particular Dask workers | ||
key_to_part_dict = dict([(part.key, part) for part in parts]) | ||
who_has = client.who_has(parts) | ||
worker_map = defaultdict(list) | ||
for key, workers in who_has.items(): | ||
worker_map[next(iter(workers))].append(key_to_part_dict[key]) | ||
|
||
master_worker = next(iter(worker_map)) | ||
worker_ncores = client.ncores() | ||
|
||
if 'tree_learner' not in params or params['tree_learner'].lower() not in {'data', 'feature', 'voting'}: | ||
logger.warning('Parameter tree_learner not set or set to incorrect value ' | ||
'(%s), using "data" as default', params.get("tree_learner", None)) | ||
params['tree_learner'] = 'data' | ||
|
||
# Tell each worker to train on the parts that it has locally | ||
futures_classifiers = [client.submit(_train_part, | ||
model_factory=model_factory, | ||
params={**params, 'num_threads': worker_ncores[worker]}, | ||
list_of_parts=list_of_parts, | ||
worker_addresses=list(worker_map.keys()), | ||
local_listen_port=params.get('local_listen_port', 12400), | ||
time_out=params.get('time_out', 120), | ||
return_model=(worker == master_worker), | ||
**kwargs) | ||
for worker, list_of_parts in worker_map.items()] | ||
|
||
results = client.gather(futures_classifiers) | ||
results = [v for v in results if v] | ||
return results[0] | ||
|
||
|
||
def _predict_part(part, model, proba, **kwargs): | ||
data = part.values if isinstance(part, pd.DataFrame) else part | ||
|
||
if data.shape[0] == 0: | ||
result = np.array([]) | ||
elif proba: | ||
result = model.predict_proba(data, **kwargs) | ||
else: | ||
result = model.predict(data, **kwargs) | ||
|
||
if isinstance(part, pd.DataFrame): | ||
if proba: | ||
result = pd.DataFrame(result, index=part.index) | ||
else: | ||
result = pd.Series(result, index=part.index, name='predictions') | ||
|
||
return result | ||
|
||
|
||
def _predict(model, data, proba=False, dtype=np.float32, **kwargs): | ||
"""Inner predict routine. | ||
Parameters | ||
---------- | ||
model : | ||
data : dask array of shape = [n_samples, n_features] | ||
Input feature matrix. | ||
proba : bool | ||
Should method return results of predict_proba (proba == True) or predict (proba == False) | ||
dtype : np.dtype | ||
Dtype of the output | ||
kwargs : other parameters passed to predict or predict_proba method | ||
""" | ||
if isinstance(data, dd._Frame): | ||
return data.map_partitions(_predict_part, model=model, proba=proba, **kwargs).values | ||
elif isinstance(data, da.Array): | ||
if proba: | ||
kwargs['chunks'] = (data.chunks[0], (model.n_classes_,)) | ||
else: | ||
kwargs['drop_axis'] = 1 | ||
return data.map_blocks(_predict_part, model=model, proba=proba, dtype=dtype, **kwargs) | ||
else: | ||
raise TypeError('Data must be either Dask array or dataframe. Got %s.' % str(type(data))) | ||
|
||
|
||
class _LGBMModel: | ||
|
||
def _fit(self, model_factory, X, y=None, sample_weight=None, client=None, **kwargs): | ||
"""Docstring is inherited from the LGBMModel.""" | ||
if client is None: | ||
client = default_client() | ||
|
||
params = self.get_params(True) | ||
model = _train(client, X, y, params, model_factory, sample_weight, **kwargs) | ||
|
||
self.set_params(**model.get_params()) | ||
self._copy_extra_params(model, self) | ||
|
||
return self | ||
|
||
def _to_local(self, model_factory): | ||
model = model_factory(**self.get_params()) | ||
self._copy_extra_params(self, model) | ||
return model | ||
|
||
@staticmethod | ||
def _copy_extra_params(source, dest): | ||
params = source.get_params() | ||
attributes = source.__dict__ | ||
extra_param_names = set(attributes.keys()).difference(params.keys()) | ||
for name in extra_param_names: | ||
setattr(dest, name, attributes[name]) | ||
|
||
|
||
class DaskLGBMClassifier(_LGBMModel, LGBMClassifier): | ||
"""Distributed version of lightgbm.LGBMClassifier.""" | ||
|
||
def fit(self, X, y=None, sample_weight=None, client=None, **kwargs): | ||
"""Docstring is inherited from the LGBMModel.""" | ||
return self._fit(LGBMClassifier, X, y, sample_weight, client, **kwargs) | ||
fit.__doc__ = LGBMClassifier.fit.__doc__ | ||
|
||
def predict(self, X, **kwargs): | ||
"""Docstring is inherited from the lightgbm.LGBMClassifier.predict.""" | ||
return _predict(self.to_local(), X, dtype=self.classes_.dtype, **kwargs) | ||
predict.__doc__ = LGBMClassifier.predict.__doc__ | ||
|
||
def predict_proba(self, X, **kwargs): | ||
"""Docstring is inherited from the lightgbm.LGBMClassifier.predict_proba.""" | ||
return _predict(self.to_local(), X, proba=True, **kwargs) | ||
predict_proba.__doc__ = LGBMClassifier.predict_proba.__doc__ | ||
|
||
def to_local(self): | ||
"""Create regular version of lightgbm.LGBMClassifier from the distributed version. | ||
Returns | ||
------- | ||
model : lightgbm.LGBMClassifier | ||
""" | ||
return self._to_local(LGBMClassifier) | ||
|
||
|
||
class DaskLGBMRegressor(_LGBMModel, LGBMRegressor): | ||
"""Docstring is inherited from the lightgbm.LGBMRegressor.""" | ||
|
||
def fit(self, X, y=None, sample_weight=None, client=None, **kwargs): | ||
"""Docstring is inherited from the lightgbm.LGBMRegressor.fit.""" | ||
return self._fit(LGBMRegressor, X, y, sample_weight, client, **kwargs) | ||
fit.__doc__ = LGBMRegressor.fit.__doc__ | ||
|
||
def predict(self, X, **kwargs): | ||
"""Docstring is inherited from the lightgbm.LGBMRegressor.predict.""" | ||
return _predict(self.to_local(), X, **kwargs) | ||
predict.__doc__ = LGBMRegressor.predict.__doc__ | ||
|
||
def to_local(self): | ||
"""Create regular version of lightgbm.LGBMRegressor from the distributed version. | ||
Returns | ||
------- | ||
model : lightgbm.LGBMRegressor | ||
""" | ||
return self._to_local(LGBMRegressor) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.