Skip to content

Commit

Permalink
migrated implementation from dask/dask-lightgbm
Browse files Browse the repository at this point in the history
  • Loading branch information
SfinxCZ committed Nov 7, 2020
1 parent da6c6ea commit 9c1db8c
Show file tree
Hide file tree
Showing 5 changed files with 512 additions and 2 deletions.
2 changes: 1 addition & 1 deletion .ci/test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ if [[ "${TASK:0:9}" == "r-package" ]]; then
exit 0
fi

conda install -q -y -n $CONDA_ENV joblib matplotlib numpy pandas psutil pytest python-graphviz scikit-learn scipy
conda install -q -y -n $CONDA_ENV joblib matplotlib numpy pandas psutil pytest python-graphviz scikit-learn scipy dask distributed dask-ml

if [[ $OS_NAME == "macos" ]] && [[ $COMPILER == "clang" ]]; then
# fix "OMP: Error #15: Initializing libiomp5.dylib, but found libomp.dylib already initialized." (OpenMP library conflict due to conda's MKL)
Expand Down
2 changes: 1 addition & 1 deletion .ci/test_windows.ps1
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ conda init powershell
conda activate
conda config --set always_yes yes --set changeps1 no
conda update -q -y conda
conda create -q -y -n $env:CONDA_ENV python=$env:PYTHON_VERSION joblib matplotlib numpy pandas psutil pytest python-graphviz scikit-learn scipy ; Check-Output $?
conda create -q -y -n $env:CONDA_ENV python=$env:PYTHON_VERSION joblib matplotlib numpy pandas psutil pytest python-graphviz scikit-learn scipy dask distributed dask-ml ; Check-Output $?
conda activate $env:CONDA_ENV

if ($env:TASK -eq "regular") {
Expand Down
299 changes: 299 additions & 0 deletions python-package/lightgbm/dask.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,299 @@
"""Distributed training with LightGBM and Dask.distributed.
This module enables you to perform distributed training with LightGBM on Dask.Array and Dask.DataFrame collections.
It is based on dask-xgboost package.
"""
import logging
from collections import defaultdict

try:
from urllib.parse import urlparse
except ImportError:
from urlparse import urlparse

import dask.array as da
import dask.dataframe as dd
import lightgbm
import numpy as np
import pandas as pd
from dask import delayed
from dask.distributed import wait, default_client, get_worker
from lightgbm.basic import _safe_call, _LIB
from toolz import first, assoc

try:
import scipy.sparse as ss
except ImportError:
ss = False

logger = logging.getLogger(__name__)


def _parse_host_port(address):
parsed = urlparse(address)
return parsed.hostname, parsed.port


def build_network_params(worker_addresses, local_worker_ip, local_listen_port, time_out):
"""Build network parameters suiltable for LightGBM C backend.
Parameters
----------
worker_addresses : iterable of str - collection of worker addresses in `<protocol>://<host>:port` format
local_worker_ip : str
local_listen_port : int
listen_time_out : int
Returns
-------
params: dict
"""
addr_port_map = {addr: (local_listen_port + i) for i, addr in enumerate(worker_addresses)}
params = {
'machines': ','.join('%s:%d' % (_parse_host_port(addr)[0], port) for addr, port in addr_port_map.items()),
'local_listen_port': addr_port_map[local_worker_ip],
'time_out': time_out,
'num_machines': len(addr_port_map)
}
return params


def _concat(seq):
if isinstance(seq[0], np.ndarray):
return np.concatenate(seq, axis=0)
elif isinstance(seq[0], (pd.DataFrame, pd.Series)):
return pd.concat(seq, axis=0)
elif ss and isinstance(seq[0], ss.spmatrix):
return ss.vstack(seq, format='csr')
else:
raise TypeError('Data must be one of: numpy arrays, pandas dataframes, sparse matrices (from scipy). Got %s.' % str(type(seq[0])))


def _train_part(params, model_factory, list_of_parts, worker_addresses, return_model, local_listen_port=12400,
time_out=120, **kwargs):
network_params = build_network_params(worker_addresses, get_worker().address, local_listen_port, time_out)
params.update(network_params)

# Concatenate many parts into one
parts = tuple(zip(*list_of_parts))
data = _concat(parts[0])
label = _concat(parts[1])
weight = _concat(parts[2]) if len(parts) == 3 else None

try:
model = model_factory(**params)
model.fit(data, label, sample_weight=weight, **kwargs)
finally:
_safe_call(_LIB.LGBM_NetworkFree())

return model if return_model else None


def _split_to_parts(data, is_matrix):
parts = data.to_delayed()
if isinstance(parts, np.ndarray):
assert (parts.shape[1] == 1) if is_matrix else (parts.ndim == 1 or parts.shape[1] == 1)
parts = parts.flatten().tolist()
return parts


def train(client, data, label, params, model_factory, weight=None, **kwargs):
"""Inner train routine.
Parameters
----------
client: dask.Client - client
X : dask array of shape = [n_samples, n_features]
Input feature matrix.
y : dask array of shape = [n_samples]
The target values (class labels in classification, real numbers in regression).
params : dict
model_factory : lightgbm.LGBMClassifier or lightgbm.LGBMRegressor class
sample_weight : array-like of shape = [n_samples] or None, optional (default=None)
Weights of training data.
"""
# Split arrays/dataframes into parts. Arrange parts into tuples to enforce co-locality
data_parts = _split_to_parts(data, is_matrix=True)
label_parts = _split_to_parts(label, is_matrix=False)
if weight is None:
parts = list(map(delayed, zip(data_parts, label_parts)))
else:
weight_parts = _split_to_parts(weight, is_matrix=False)
parts = list(map(delayed, zip(data_parts, label_parts, weight_parts)))

# Start computation in the background
parts = client.compute(parts)
wait(parts)

for part in parts:
if part.status == 'error':
return part # trigger error locally

# Find locations of all parts and map them to particular Dask workers
key_to_part_dict = dict([(part.key, part) for part in parts])
who_has = client.who_has(parts)
worker_map = defaultdict(list)
for key, workers in who_has.items():
worker_map[first(workers)].append(key_to_part_dict[key])

master_worker = first(worker_map)
worker_ncores = client.ncores()

if 'tree_learner' not in params or params['tree_learner'].lower() not in {'data', 'feature', 'voting'}:
logger.warning('Parameter tree_learner not set or set to incorrect value '
'(%s), using "data" as default', params.get("tree_learner", None))
params['tree_learner'] = 'data'

# Tell each worker to train on the parts that it has locally
futures_classifiers = [client.submit(_train_part,
model_factory=model_factory,
params=assoc(params, 'num_threads', worker_ncores[worker]),
list_of_parts=list_of_parts,
worker_addresses=list(worker_map.keys()),
local_listen_port=params.get('local_listen_port', 12400),
time_out=params.get('time_out', 120),
return_model=(worker == master_worker),
**kwargs)
for worker, list_of_parts in worker_map.items()]

results = client.gather(futures_classifiers)
results = [v for v in results if v]
return results[0]


def _predict_part(part, model, proba, **kwargs):
data = part.values if isinstance(part, pd.DataFrame) else part

if data.shape[0] == 0:
result = np.array([])
elif proba:
result = model.predict_proba(data, **kwargs)
else:
result = model.predict(data, **kwargs)

if isinstance(part, pd.DataFrame):
if proba:
result = pd.DataFrame(result, index=part.index)
else:
result = pd.Series(result, index=part.index, name='predictions')

return result


def predict(client, model, data, proba=False, dtype=np.float32, **kwargs):
"""Inner predict routine.
Parameters
----------
client: dask.Client - client
model :
data : dask array of shape = [n_samples, n_features]
Input feature matrix.
proba : bool
Should method return results of predict_proba (proba == True) or predict (proba == False)
dtype : np.dtype
Dtype of the output
kwargs : other parameters passed to predict or predict_proba method
"""
if isinstance(data, dd._Frame):
return data.map_partitions(_predict_part, model=model, proba=proba, **kwargs).values
elif isinstance(data, da.Array):
if proba:
kwargs['chunks'] = (data.chunks[0], (model.n_classes_,))
else:
kwargs['drop_axis'] = 1
return data.map_blocks(_predict_part, model=model, proba=proba, dtype=dtype, **kwargs)
else:
raise TypeError('Data must be either Dask array or dataframe. Got %s.' % str(type(data)))


class _LGBMModel:

@staticmethod
def _copy_extra_params(source, dest):
params = source.get_params()
attributes = source.__dict__
extra_param_names = set(attributes.keys()).difference(params.keys())
for name in extra_param_names:
setattr(dest, name, attributes[name])


class LGBMClassifier(_LGBMModel, lightgbm.LGBMClassifier):
"""Distributed version of lightgbm.LGBMClassifier."""

def fit(self, X, y=None, sample_weight=None, client=None, **kwargs):
"""Docstring is inherited from the LGBMModel."""
if client is None:
client = default_client()

model_factory = lightgbm.LGBMClassifier
params = self.get_params(True)
model = train(client, X, y, params, model_factory, sample_weight, **kwargs)

self.set_params(**model.get_params())
self._copy_extra_params(model, self)

return self
fit.__doc__ = lightgbm.LGBMClassifier.fit.__doc__

def predict(self, X, client=None, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMClassifier.predict."""
if client is None:
client = default_client()
return predict(client, self.to_local(), X, dtype=self.classes_.dtype, **kwargs)
predict.__doc__ = lightgbm.LGBMClassifier.predict.__doc__

def predict_proba(self, X, client=None, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMClassifier.predict_proba."""
if client is None:
client = default_client()
return predict(client, self.to_local(), X, proba=True, **kwargs)
predict_proba.__doc__ = lightgbm.LGBMClassifier.predict_proba.__doc__

def to_local(self):
"""Create regular version of lightgbm.LGBMClassifier from the distributed version.
Returns
-------
model : lightgbm.LGBMClassifier
"""
model = lightgbm.LGBMClassifier(**self.get_params())
self._copy_extra_params(self, model)
return model


class LGBMRegressor(_LGBMModel, lightgbm.LGBMRegressor):
"""Docstring is inherited from the lightgbm.LGBMRegressor."""

def fit(self, X, y=None, sample_weight=None, client=None, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMRegressor.fit."""
if client is None:
client = default_client()

model_factory = lightgbm.LGBMRegressor
params = self.get_params(True)
model = train(client, X, y, params, model_factory, sample_weight, **kwargs)

self.set_params(**model.get_params())
self._copy_extra_params(model, self)

return self
fit.__doc__ = lightgbm.LGBMRegressor.fit.__doc__

def predict(self, X, client=None, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMRegressor.predict."""
if client is None:
client = default_client()
return predict(client, self.to_local(), X, **kwargs)
predict.__doc__ = lightgbm.LGBMRegressor.predict.__doc__

def to_local(self):
"""Create regular version of lightgbm.LGBMRegressor from the distributed version.
Returns
-------
model : lightgbm.LGBMRegressor
"""
model = lightgbm.LGBMRegressor(**self.get_params())
self._copy_extra_params(self, model)
return model
6 changes: 6 additions & 0 deletions python-package/setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -292,6 +292,12 @@ def run(self):
'scipy',
'scikit-learn!=0.22.0'
],
extras_requires={
'dask': [
'dask>=0.16.0',
'distributed>=1.15.2'
],
},
maintainer='Guolin Ke',
maintainer_email='guolin.ke@microsoft.com',
zip_safe=False,
Expand Down
Loading

0 comments on commit 9c1db8c

Please sign in to comment.