-
Notifications
You must be signed in to change notification settings - Fork 3.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
migrated implementation from dask/dask-lightgbm
- Loading branch information
Showing
5 changed files
with
512 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,299 @@ | ||
"""Distributed training with LightGBM and Dask.distributed. | ||
This module enables you to perform distributed training with LightGBM on Dask.Array and Dask.DataFrame collections. | ||
It is based on dask-xgboost package. | ||
""" | ||
import logging | ||
from collections import defaultdict | ||
|
||
try: | ||
from urllib.parse import urlparse | ||
except ImportError: | ||
from urlparse import urlparse | ||
|
||
import dask.array as da | ||
import dask.dataframe as dd | ||
import lightgbm | ||
import numpy as np | ||
import pandas as pd | ||
from dask import delayed | ||
from dask.distributed import wait, default_client, get_worker | ||
from lightgbm.basic import _safe_call, _LIB | ||
from toolz import first, assoc | ||
|
||
try: | ||
import scipy.sparse as ss | ||
except ImportError: | ||
ss = False | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
def _parse_host_port(address): | ||
parsed = urlparse(address) | ||
return parsed.hostname, parsed.port | ||
|
||
|
||
def build_network_params(worker_addresses, local_worker_ip, local_listen_port, time_out): | ||
"""Build network parameters suiltable for LightGBM C backend. | ||
Parameters | ||
---------- | ||
worker_addresses : iterable of str - collection of worker addresses in `<protocol>://<host>:port` format | ||
local_worker_ip : str | ||
local_listen_port : int | ||
listen_time_out : int | ||
Returns | ||
------- | ||
params: dict | ||
""" | ||
addr_port_map = {addr: (local_listen_port + i) for i, addr in enumerate(worker_addresses)} | ||
params = { | ||
'machines': ','.join('%s:%d' % (_parse_host_port(addr)[0], port) for addr, port in addr_port_map.items()), | ||
'local_listen_port': addr_port_map[local_worker_ip], | ||
'time_out': time_out, | ||
'num_machines': len(addr_port_map) | ||
} | ||
return params | ||
|
||
|
||
def _concat(seq): | ||
if isinstance(seq[0], np.ndarray): | ||
return np.concatenate(seq, axis=0) | ||
elif isinstance(seq[0], (pd.DataFrame, pd.Series)): | ||
return pd.concat(seq, axis=0) | ||
elif ss and isinstance(seq[0], ss.spmatrix): | ||
return ss.vstack(seq, format='csr') | ||
else: | ||
raise TypeError('Data must be one of: numpy arrays, pandas dataframes, sparse matrices (from scipy). Got %s.' % str(type(seq[0]))) | ||
|
||
|
||
def _train_part(params, model_factory, list_of_parts, worker_addresses, return_model, local_listen_port=12400, | ||
time_out=120, **kwargs): | ||
network_params = build_network_params(worker_addresses, get_worker().address, local_listen_port, time_out) | ||
params.update(network_params) | ||
|
||
# Concatenate many parts into one | ||
parts = tuple(zip(*list_of_parts)) | ||
data = _concat(parts[0]) | ||
label = _concat(parts[1]) | ||
weight = _concat(parts[2]) if len(parts) == 3 else None | ||
|
||
try: | ||
model = model_factory(**params) | ||
model.fit(data, label, sample_weight=weight, **kwargs) | ||
finally: | ||
_safe_call(_LIB.LGBM_NetworkFree()) | ||
|
||
return model if return_model else None | ||
|
||
|
||
def _split_to_parts(data, is_matrix): | ||
parts = data.to_delayed() | ||
if isinstance(parts, np.ndarray): | ||
assert (parts.shape[1] == 1) if is_matrix else (parts.ndim == 1 or parts.shape[1] == 1) | ||
parts = parts.flatten().tolist() | ||
return parts | ||
|
||
|
||
def train(client, data, label, params, model_factory, weight=None, **kwargs): | ||
"""Inner train routine. | ||
Parameters | ||
---------- | ||
client: dask.Client - client | ||
X : dask array of shape = [n_samples, n_features] | ||
Input feature matrix. | ||
y : dask array of shape = [n_samples] | ||
The target values (class labels in classification, real numbers in regression). | ||
params : dict | ||
model_factory : lightgbm.LGBMClassifier or lightgbm.LGBMRegressor class | ||
sample_weight : array-like of shape = [n_samples] or None, optional (default=None) | ||
Weights of training data. | ||
""" | ||
# Split arrays/dataframes into parts. Arrange parts into tuples to enforce co-locality | ||
data_parts = _split_to_parts(data, is_matrix=True) | ||
label_parts = _split_to_parts(label, is_matrix=False) | ||
if weight is None: | ||
parts = list(map(delayed, zip(data_parts, label_parts))) | ||
else: | ||
weight_parts = _split_to_parts(weight, is_matrix=False) | ||
parts = list(map(delayed, zip(data_parts, label_parts, weight_parts))) | ||
|
||
# Start computation in the background | ||
parts = client.compute(parts) | ||
wait(parts) | ||
|
||
for part in parts: | ||
if part.status == 'error': | ||
return part # trigger error locally | ||
|
||
# Find locations of all parts and map them to particular Dask workers | ||
key_to_part_dict = dict([(part.key, part) for part in parts]) | ||
who_has = client.who_has(parts) | ||
worker_map = defaultdict(list) | ||
for key, workers in who_has.items(): | ||
worker_map[first(workers)].append(key_to_part_dict[key]) | ||
|
||
master_worker = first(worker_map) | ||
worker_ncores = client.ncores() | ||
|
||
if 'tree_learner' not in params or params['tree_learner'].lower() not in {'data', 'feature', 'voting'}: | ||
logger.warning('Parameter tree_learner not set or set to incorrect value ' | ||
'(%s), using "data" as default', params.get("tree_learner", None)) | ||
params['tree_learner'] = 'data' | ||
|
||
# Tell each worker to train on the parts that it has locally | ||
futures_classifiers = [client.submit(_train_part, | ||
model_factory=model_factory, | ||
params=assoc(params, 'num_threads', worker_ncores[worker]), | ||
list_of_parts=list_of_parts, | ||
worker_addresses=list(worker_map.keys()), | ||
local_listen_port=params.get('local_listen_port', 12400), | ||
time_out=params.get('time_out', 120), | ||
return_model=(worker == master_worker), | ||
**kwargs) | ||
for worker, list_of_parts in worker_map.items()] | ||
|
||
results = client.gather(futures_classifiers) | ||
results = [v for v in results if v] | ||
return results[0] | ||
|
||
|
||
def _predict_part(part, model, proba, **kwargs): | ||
data = part.values if isinstance(part, pd.DataFrame) else part | ||
|
||
if data.shape[0] == 0: | ||
result = np.array([]) | ||
elif proba: | ||
result = model.predict_proba(data, **kwargs) | ||
else: | ||
result = model.predict(data, **kwargs) | ||
|
||
if isinstance(part, pd.DataFrame): | ||
if proba: | ||
result = pd.DataFrame(result, index=part.index) | ||
else: | ||
result = pd.Series(result, index=part.index, name='predictions') | ||
|
||
return result | ||
|
||
|
||
def predict(client, model, data, proba=False, dtype=np.float32, **kwargs): | ||
"""Inner predict routine. | ||
Parameters | ||
---------- | ||
client: dask.Client - client | ||
model : | ||
data : dask array of shape = [n_samples, n_features] | ||
Input feature matrix. | ||
proba : bool | ||
Should method return results of predict_proba (proba == True) or predict (proba == False) | ||
dtype : np.dtype | ||
Dtype of the output | ||
kwargs : other parameters passed to predict or predict_proba method | ||
""" | ||
if isinstance(data, dd._Frame): | ||
return data.map_partitions(_predict_part, model=model, proba=proba, **kwargs).values | ||
elif isinstance(data, da.Array): | ||
if proba: | ||
kwargs['chunks'] = (data.chunks[0], (model.n_classes_,)) | ||
else: | ||
kwargs['drop_axis'] = 1 | ||
return data.map_blocks(_predict_part, model=model, proba=proba, dtype=dtype, **kwargs) | ||
else: | ||
raise TypeError('Data must be either Dask array or dataframe. Got %s.' % str(type(data))) | ||
|
||
|
||
class _LGBMModel: | ||
|
||
@staticmethod | ||
def _copy_extra_params(source, dest): | ||
params = source.get_params() | ||
attributes = source.__dict__ | ||
extra_param_names = set(attributes.keys()).difference(params.keys()) | ||
for name in extra_param_names: | ||
setattr(dest, name, attributes[name]) | ||
|
||
|
||
class LGBMClassifier(_LGBMModel, lightgbm.LGBMClassifier): | ||
"""Distributed version of lightgbm.LGBMClassifier.""" | ||
|
||
def fit(self, X, y=None, sample_weight=None, client=None, **kwargs): | ||
"""Docstring is inherited from the LGBMModel.""" | ||
if client is None: | ||
client = default_client() | ||
|
||
model_factory = lightgbm.LGBMClassifier | ||
params = self.get_params(True) | ||
model = train(client, X, y, params, model_factory, sample_weight, **kwargs) | ||
|
||
self.set_params(**model.get_params()) | ||
self._copy_extra_params(model, self) | ||
|
||
return self | ||
fit.__doc__ = lightgbm.LGBMClassifier.fit.__doc__ | ||
|
||
def predict(self, X, client=None, **kwargs): | ||
"""Docstring is inherited from the lightgbm.LGBMClassifier.predict.""" | ||
if client is None: | ||
client = default_client() | ||
return predict(client, self.to_local(), X, dtype=self.classes_.dtype, **kwargs) | ||
predict.__doc__ = lightgbm.LGBMClassifier.predict.__doc__ | ||
|
||
def predict_proba(self, X, client=None, **kwargs): | ||
"""Docstring is inherited from the lightgbm.LGBMClassifier.predict_proba.""" | ||
if client is None: | ||
client = default_client() | ||
return predict(client, self.to_local(), X, proba=True, **kwargs) | ||
predict_proba.__doc__ = lightgbm.LGBMClassifier.predict_proba.__doc__ | ||
|
||
def to_local(self): | ||
"""Create regular version of lightgbm.LGBMClassifier from the distributed version. | ||
Returns | ||
------- | ||
model : lightgbm.LGBMClassifier | ||
""" | ||
model = lightgbm.LGBMClassifier(**self.get_params()) | ||
self._copy_extra_params(self, model) | ||
return model | ||
|
||
|
||
class LGBMRegressor(_LGBMModel, lightgbm.LGBMRegressor): | ||
"""Docstring is inherited from the lightgbm.LGBMRegressor.""" | ||
|
||
def fit(self, X, y=None, sample_weight=None, client=None, **kwargs): | ||
"""Docstring is inherited from the lightgbm.LGBMRegressor.fit.""" | ||
if client is None: | ||
client = default_client() | ||
|
||
model_factory = lightgbm.LGBMRegressor | ||
params = self.get_params(True) | ||
model = train(client, X, y, params, model_factory, sample_weight, **kwargs) | ||
|
||
self.set_params(**model.get_params()) | ||
self._copy_extra_params(model, self) | ||
|
||
return self | ||
fit.__doc__ = lightgbm.LGBMRegressor.fit.__doc__ | ||
|
||
def predict(self, X, client=None, **kwargs): | ||
"""Docstring is inherited from the lightgbm.LGBMRegressor.predict.""" | ||
if client is None: | ||
client = default_client() | ||
return predict(client, self.to_local(), X, **kwargs) | ||
predict.__doc__ = lightgbm.LGBMRegressor.predict.__doc__ | ||
|
||
def to_local(self): | ||
"""Create regular version of lightgbm.LGBMRegressor from the distributed version. | ||
Returns | ||
------- | ||
model : lightgbm.LGBMRegressor | ||
""" | ||
model = lightgbm.LGBMRegressor(**self.get_params()) | ||
self._copy_extra_params(self, model) | ||
return model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.