Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

inference: remove unused _validate_args function #5505

Merged
merged 14 commits into from
Jan 7, 2025
Merged
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 0 additions & 24 deletions deepspeed/inference/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,6 @@ def __init__(self, model, config):
self.mp_group = config.tensor_parallel.tp_group
self.mpu = config.tensor_parallel.mpu

#self._validate_args(self.mpu, config.replace_with_kernel_inject)
self.quantize_merge_count = 1
self.quantization_scales = None

Expand Down Expand Up @@ -308,29 +307,6 @@ def _init_quantization_setting(self, quantization_setting):
f"mlp_extra_grouping = {self.mlp_extra_grouping}, "
f"quantize_groups = {self.quantize_groups}", [0])

# TODO: remove this function and add this functionality to pydantic config checking
loadams marked this conversation as resolved.
Show resolved Hide resolved
def _validate_args(self, mpu, replace_with_kernel_inject):
# TODO: to support SD pipeline we need to avoid this check for now
if replace_with_kernel_inject and not isinstance(self.module, Module):
raise ValueError(f"model must be a torch.nn.Module, got {type(self.module)}")
if not isinstance(self._config.tensor_parallel.tp_size, int) or self._config.tensor_parallel.tp_size < 1:
raise ValueError(f"mp_size must be an int >= 1, got {self._config.tensor_parallel.tp_size}")

if mpu:
methods = ["get_model_parallel_group", "get_data_parallel_group"]
for method in methods:
if not hasattr(mpu, method):
raise ValueError(f"mpu is missing {method}")
if self._config.checkpoint is not None and not isinstance(self._config.checkpoint, (str, dict)):
raise ValueError(f"checkpoint must be None, str or dict, got {type(self._config.checkpoint)}")

supported_dtypes = [None, torch.half, torch.int8, torch.float]
if self._config.dtype not in supported_dtypes:
raise ValueError(f"{self._config.dtype} not supported, valid dtype: {supported_dtypes}")

if self.injection_dict is not None and not isinstance(self.injection_dict, dict):
raise ValueError(f"injection_dict must be None or a dict, got: {self.injection_dict}")

def load_model_with_checkpoint(self, r_module):
self.mp_replace = ReplaceWithTensorSlicing(
mp_group=self.mp_group, mp_size=self._config.tensor_parallel.tp_size) #, out_dim=0, in_dim=1)
Expand Down
Loading