Skip to content

deepspeed.zero.Init causes infinite recursion error #2139

Closed
Lightning-AI/pytorch-lightning
#13967
@awaelchli

Description

Describe the bug

When the deepspeed.zero.Init wraps not only the model but also the deepspeed.initialize call, a RecursionError is raised.
This happens in deepspeed 0.6.5 but NOT in 0.6.4. It blocks the integration with Lightning Lite where we until now wrapped the entire run() method with the context.

To Reproduce

import argparse
import os

import deepspeed
import torch
import torch.nn as nn


class TheModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.layer = torch.nn.Linear(32, 2, bias=False)


config = {
    "activation_checkpointing": {
        "contiguous_memory_optimization": False,
        "cpu_checkpointing": False,
        "partition_activations": False,
        "synchronize_checkpoint_boundary": False,
    },
    "aio": {
        "block_size": 1048576,
        "overlap_events": True,
        "queue_depth": 8,
        "single_submit": False,
        "thread_count": 1,
    },
    "train_micro_batch_size_per_gpu": 1,
    "zero_allow_untested_optimizer": True,
    "zero_optimization": {
        "allgather_bucket_size": 200000000,
        "allgather_partitions": True,
        "contiguous_gradients": True,
        "overlap_comm": True,
        "reduce_bucket_size": 200000000,
        "reduce_scatter": True,
        "stage": 3,
        "sub_group_size": 1000000000000,
    },
}


def worker(rank):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "12234"
    os.environ["WORLD_SIZE"] = "2"
    os.environ["RANK"] = str(rank)
    os.environ["LOCAL_RANK"] = str(rank)
    deepspeed.init_distributed()

    model_parallel_context = deepspeed.zero.Init(
        remote_device="cpu", pin_memory=True, config_dict_or_path=config, dtype=torch.float32
    )

    # If the context goes over the model AND the deepspeed.initilize call, we get an infinite recursion error
    # This worked in 0.6.4, but not in 0.6.5
    with model_parallel_context:
        model = TheModel()

    # If the context only goes over the model, no error occurs (unindent the lines below)
        deepspeed_engine, deepspeed_optimizer, _, _ = deepspeed.initialize(
            args=argparse.Namespace(device_rank=rank),
            model=model,
            # model_parameters=model.parameters(),
            # optimizer=optimizer,
            dist_init_required=False,
            config=config,
        )


if __name__ == "__main__":
    torch.multiprocessing.spawn(worker, nprocs=2)

Output (may need to press ctrl+c on hang):

  File "/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/deepspeed/runtime/engine.py", line 432, in __getattr__
    if name in dir(self):
  File "/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1847, in __dir__
    parameters = list(self._parameters.keys())
  File "/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/deepspeed/runtime/engine.py", line 432, in __getattr__
    if name in dir(self):
  File "/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1845, in __dir__
    module_attrs = dir(self.__class__)
RecursionError: maximum recursion depth exceeded while calling a Python object

Expected behavior
This worked in 0.6.4, so my assumption is that the change was unintentional. Git blame points to #1915. We weren't able to spot exactly which lines caused it, but suspect the getattr changes on the deepspeed engine.

ds_report output

--------------------------------------------------
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
      runtime if needed. Op compatibility means that your system
      meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
cpu_adam ............... [NO] ....... [OKAY]
cpu_adagrad ............ [NO] ....... [OKAY]
fused_adam ............. [NO] ....... [OKAY]
fused_lamb ............. [NO] ....... [OKAY]
 [WARNING]  please install triton==1.0.0 if you want to use sparse attention
sparse_attn ............ [NO] ....... [NO]
transformer ............ [NO] ....... [OKAY]
stochastic_transformer . [NO] ....... [OKAY]
 [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
 [WARNING]  async_io: please install the libaio-dev package with apt
 [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
async_io ............... [NO] ....... [NO]
utils .................. [NO] ....... [OKAY]
quantizer .............. [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/torch']
torch version .................... 1.11.0
torch cuda version ............... 11.3
torch hip version ................ None
nvcc version ..................... 11.1
deepspeed install path ........... ['/home/adrian/anaconda3/envs/lightning/lib/python3.10/site-packages/deepspeed']
deepspeed info ................... 0.6.4, unknown, unknown
deepspeed wheel compiled w. ...... torch 1.11, cuda 11.3

System info (please complete the following information):

  • OS: Ubuntu
  • GPU count and types: 2x RTX3090
  • Interconnects (if applicable) [e.g., two machines connected with 100 Gbps IB]
  • Python version: 3.9
  • Any other relevant info about your setup

Launcher context
I'm launching using torch.multiprocessing for simplicity in reproducing, but the bug is unrelated to how it is getting launched.

Docker context
No docker

Additional context

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions