-
Notifications
You must be signed in to change notification settings - Fork 4.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add a new unit test for cuda ops (#2278)
Co-authored-by: cmikeh2 <connorholmes@microsoft.com>
- Loading branch information
Showing
2 changed files
with
62 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
import pytest | ||
import torch | ||
import deepspeed | ||
from deepspeed.ops.op_builder import InferenceBuilder | ||
|
||
if not deepspeed.ops.__compatible_ops__[InferenceBuilder.NAME]: | ||
pytest.skip("Inference ops are not available on this system", | ||
allow_module_level=True) | ||
|
||
inference_module = None | ||
torch_minor_version = None | ||
|
||
|
||
def allclose(x, y): | ||
assert x.dtype == y.dtype | ||
rtol, atol = {torch.float32: (5e-4, 5e-5), torch.float16: (3e-2, 2e-3)}[x.dtype] | ||
return torch.allclose(x, y, rtol=rtol, atol=atol) | ||
|
||
|
||
def version_appropriate_gelu(activations): | ||
global torch_minor_version | ||
if torch_minor_version is None: | ||
torch_minor_version = int(torch.__version__.split('.')[1]) | ||
# If torch version = 1.12 | ||
if torch_minor_version < 12: | ||
return torch.nn.functional.gelu(activations) | ||
else: | ||
return torch.nn.functional.gelu(activations, approximate='tanh') | ||
|
||
|
||
def run_bias_gelu_reference(activations, bias): | ||
# Expected behavior is that of casting to float32 internally and using the tanh approximation | ||
return version_appropriate_gelu( | ||
activations.to(torch.float32) + bias.to(torch.float32)).to(activations.dtype) | ||
|
||
|
||
def run_bias_gelu_ds(activations, bias): | ||
global inference_module | ||
if inference_module is None: | ||
inference_module = InferenceBuilder().load() | ||
if activations.dtype == torch.float16: | ||
return inference_module.bias_gelu_fp16(activations, bias) | ||
else: | ||
return inference_module.bias_gelu_fp32(activations, bias) | ||
|
||
|
||
@pytest.mark.inference | ||
@pytest.mark.parametrize("batch", [1, 2]) | ||
@pytest.mark.parametrize("sequence", [1, 128, 255]) | ||
@pytest.mark.parametrize("channels", [512, 1232, 4096]) | ||
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32]) | ||
def test_bias_gelu(batch, sequence, channels, dtype): | ||
activations_ds = torch.randn((batch, sequence, channels), dtype=dtype, device='cuda') | ||
bias_ds = torch.randn((channels), dtype=dtype, device='cuda') | ||
|
||
activations_ref = activations_ds.clone().detach() | ||
bias_ref = bias_ds.clone().detach() | ||
|
||
ds_out = run_bias_gelu_ds(activations_ds, bias_ds) | ||
ref_out = run_bias_gelu_reference(activations_ref, bias_ref) | ||
assert (allclose(ds_out, ref_out)) |