Skip to content

Commit

Permalink
enable cog
Browse files Browse the repository at this point in the history
  • Loading branch information
Chenxi authored and Chenxi committed Sep 13, 2021
1 parent 046ed37 commit c7067ce
Show file tree
Hide file tree
Showing 3 changed files with 252 additions and 0 deletions.
29 changes: 29 additions & 0 deletions cog.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
build:
gpu: true
python_version: "3.8"
system_packages:
- "libgl1-mesa-glx"
- "libglib2.0-0"
python_packages:
- "cmake==3.21.2"
- "torchvision==0.9.0"
- "torch==1.8.0"
- "numpy==1.19.4"
- "opencv-python==4.4.0.46"
- "scipy==1.5.3"
- "tensorboardX==2.4"
- "dominate==2.6.0"
- "easydict==1.9"
- "PyYAML==5.3.1"
- "scikit-image==0.18.3"
- "dill==0.3.4"
- "einops==0.3.0"
- "PySimpleGUI==4.46.0"
- "ipython==7.19.0"
pre_install:
- pip install dlib

predict: "predict.py:Predictor"



28 changes: 28 additions & 0 deletions download-weights
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
#!/bin/sh

cd Face_Enhancement/models/networks
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../../

cd Global/detection_models
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../

# download the landmark detection model
cd Face_Detection/
wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
bzip2 -d shape_predictor_68_face_landmarks.dat.bz2
cd ../

# download the pretrained model
cd Face_Enhancement/
wget https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Face_Enhancement/checkpoints.zip
unzip checkpoints.zip
cd ../

cd Global/
wget https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Global/checkpoints.zip
unzip checkpoints.zip
cd ../
195 changes: 195 additions & 0 deletions predict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
import cog
import tempfile
from pathlib import Path
import argparse
import sys
import shutil
import os
import cv2
import glob
from run import run_cmd


class Predictor(cog.Predictor):
def setup(self):
parser = argparse.ArgumentParser()
parser.add_argument("--input_folder", type=str, default='input/cog_temp', help="Test images")
parser.add_argument(
"--output_folder",
type=str,
default="output",
help="Restored images, please use the absolute path",
)
parser.add_argument("--GPU", type=str, default="0", help="0,1,2")
parser.add_argument(
"--checkpoint_name", type=str, default="Setting_9_epoch_100", help="choose which checkpoint"
)
self.opts = parser.parse_args('')
self.basepath = os.getcwd()
self.opts.input_folder = os.path.join(self.basepath, self.opts.input_folder)
self.opts.output_folder = os.path.join(self.basepath, self.opts.output_folder)
os.makedirs(self.opts.input_folder, exist_ok=True)
os.makedirs(self.opts.output_folder, exist_ok=True)


@cog.input("image", type=Path, help="input image")
@cog.input("HR", type=bool, default=False, help="whether high-resolution image")
@cog.input("with_scratch", type=bool, default=False, help="whether input image is scratched")
def predict(self, image, HR=False, with_scratch=False):
input_path = os.path.join(self.opts.input_folder, os.path.basename(image))
shutil.copy(str(image), input_path)

gpu1 = self.opts.GPU

## Stage 1: Overall Quality Improve
print("Running Stage 1: Overall restoration")
os.chdir("./Global")
stage_1_input_dir = self.opts.input_folder
stage_1_output_dir = os.path.join(self.opts.output_folder, "stage_1_restore_output")

os.makedirs(stage_1_output_dir, exist_ok=True)

if not with_scratch:

stage_1_command = (
"python test.py --test_mode Full --Quality_restore --test_input "
+ stage_1_input_dir
+ " --outputs_dir "
+ stage_1_output_dir
+ " --gpu_ids "
+ gpu1
)
run_cmd(stage_1_command)
else:

mask_dir = os.path.join(stage_1_output_dir, "masks")
new_input = os.path.join(mask_dir, "input")
new_mask = os.path.join(mask_dir, "mask")
stage_1_command_1 = (
"python detection.py --test_path "
+ stage_1_input_dir
+ " --output_dir "
+ mask_dir
+ " --input_size full_size"
+ " --GPU "
+ gpu1
)

if HR:
HR_suffix = " --HR"
else:
HR_suffix = ""

stage_1_command_2 = (
"python test.py --Scratch_and_Quality_restore --test_input "
+ new_input
+ " --test_mask "
+ new_mask
+ " --outputs_dir "
+ stage_1_output_dir
+ " --gpu_ids "
+ gpu1 + HR_suffix
)

run_cmd(stage_1_command_1)
run_cmd(stage_1_command_2)

## Solve the case when there is no face in the old photo
stage_1_results = os.path.join(stage_1_output_dir, "restored_image")
stage_4_output_dir = os.path.join(self.opts.output_folder, "final_output")
os.makedirs(stage_4_output_dir, exist_ok=True)
for x in os.listdir(stage_1_results):
img_dir = os.path.join(stage_1_results, x)
shutil.copy(img_dir, stage_4_output_dir)

print("Finish Stage 1 ...")
print("\n")

## Stage 2: Face Detection

print("Running Stage 2: Face Detection")
os.chdir(".././Face_Detection")
stage_2_input_dir = os.path.join(stage_1_output_dir, "restored_image")
stage_2_output_dir = os.path.join(self.opts.output_folder, "stage_2_detection_output")
os.makedirs(stage_2_output_dir, exist_ok=True)

stage_2_command = (
"python detect_all_dlib_HR.py --url " + stage_2_input_dir + " --save_url " + stage_2_output_dir
)

run_cmd(stage_2_command)
print("Finish Stage 2 ...")
print("\n")

## Stage 3: Face Restore
print("Running Stage 3: Face Enhancement")
os.chdir(".././Face_Enhancement")
stage_3_input_mask = "./"
stage_3_input_face = stage_2_output_dir
stage_3_output_dir = os.path.join(self.opts.output_folder, "stage_3_face_output")

os.makedirs(stage_3_output_dir, exist_ok=True)

self.opts.checkpoint_name = 'FaceSR_512'
stage_3_command = (
"python test_face.py --old_face_folder "
+ stage_3_input_face
+ " --old_face_label_folder "
+ stage_3_input_mask
+ " --tensorboard_log --name "
+ self.opts.checkpoint_name
+ " --gpu_ids "
+ gpu1
+ " --load_size 512 --label_nc 18 --no_instance --preprocess_mode resize --batchSize 1 --results_dir "
+ stage_3_output_dir
+ " --no_parsing_map"
)

run_cmd(stage_3_command)
print("Finish Stage 3 ...")
print("\n")

## Stage 4: Warp back
print("Running Stage 4: Blending")
os.chdir(".././Face_Detection")
stage_4_input_image_dir = os.path.join(stage_1_output_dir, "restored_image")
stage_4_input_face_dir = os.path.join(stage_3_output_dir, "each_img")
stage_4_output_dir = os.path.join(self.opts.output_folder, "final_output")
os.makedirs(stage_4_output_dir, exist_ok=True)

stage_4_command = (
"python align_warp_back_multiple_dlib_HR.py --origin_url "
+ stage_4_input_image_dir
+ " --replace_url "
+ stage_4_input_face_dir
+ " --save_url "
+ stage_4_output_dir
)

run_cmd(stage_4_command)
print("Finish Stage 4 ...")
print("\n")

print("All the processing is done. Please check the results.")

img_name = os.path.basename(str(image))
image_restore = cv2.imread(os.path.join(self.opts.output_folder, 'final_output', img_name))

out_path = Path(tempfile.mkdtemp()) / "out.png"

cv2.imwrite(str(out_path), image_restore)
clean_folder(self.opts.input_folder)
clean_folder(self.opts.output_folder)
return out_path


def clean_folder(folder):
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print('Failed to delete %s. Reason: %s' % (file_path, e))

0 comments on commit c7067ce

Please sign in to comment.