Skip to content

Commit

Permalink
Merge pull request #199 from CJWBW/replicate
Browse files Browse the repository at this point in the history
Add Docker environment & web demo
  • Loading branch information
zhangmozhe authored Oct 9, 2021
2 parents 046ed37 + e9f55ec commit bce7d62
Show file tree
Hide file tree
Showing 4 changed files with 277 additions and 1 deletion.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

<img src='imgs/0001.jpg'/>

### [Project Page](http://raywzy.com/Old_Photo/) | [Paper (CVPR version)](https://arxiv.org/abs/2004.09484) | [Paper (Journal version)](https://arxiv.org/pdf/2009.07047v1.pdf) | [Pretrained Model](https://hkustconnect-my.sharepoint.com/:f:/g/personal/bzhangai_connect_ust_hk/Em0KnYOeSSxFtp4g_dhWdf0BdeT3tY12jIYJ6qvSf300cA?e=nXkJH2) | [Colab Demo](https://colab.research.google.com/drive/1NEm6AsybIiC5TwTU_4DqDkQO0nFRB-uA?usp=sharing) :fire:
### [Project Page](http://raywzy.com/Old_Photo/) | [Paper (CVPR version)](https://arxiv.org/abs/2004.09484) | [Paper (Journal version)](https://arxiv.org/pdf/2009.07047v1.pdf) | [Pretrained Model](https://hkustconnect-my.sharepoint.com/:f:/g/personal/bzhangai_connect_ust_hk/Em0KnYOeSSxFtp4g_dhWdf0BdeT3tY12jIYJ6qvSf300cA?e=nXkJH2) | [Colab Demo](https://colab.research.google.com/drive/1NEm6AsybIiC5TwTU_4DqDkQO0nFRB-uA?usp=sharing) | [Replicate Demo & Docker Image](https://replicate.ai/zhangmozhe/bringing-old-photos-back-to-life) :fire:

**Bringing Old Photos Back to Life, CVPR2020 (Oral)**

Expand Down
26 changes: 26 additions & 0 deletions cog.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
build:
gpu: true
python_version: "3.8"
system_packages:
- "libgl1-mesa-glx"
- "libglib2.0-0"
python_packages:
- "cmake==3.21.2"
- "torchvision==0.9.0"
- "torch==1.8.0"
- "numpy==1.19.4"
- "opencv-python==4.4.0.46"
- "scipy==1.5.3"
- "tensorboardX==2.4"
- "dominate==2.6.0"
- "easydict==1.9"
- "PyYAML==5.3.1"
- "scikit-image==0.18.3"
- "dill==0.3.4"
- "einops==0.3.0"
- "PySimpleGUI==4.46.0"
- "ipython==7.19.0"
run:
- pip install dlib

predict: "predict.py:Predictor"
28 changes: 28 additions & 0 deletions download-weights
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
#!/bin/sh

cd Face_Enhancement/models/networks
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../../

cd Global/detection_models
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../

# download the landmark detection model
cd Face_Detection/
wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
bzip2 -d shape_predictor_68_face_landmarks.dat.bz2
cd ../

# download the pretrained model
cd Face_Enhancement/
wget https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Face_Enhancement/checkpoints.zip
unzip checkpoints.zip
cd ../

cd Global/
wget https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Global/checkpoints.zip
unzip checkpoints.zip
cd ../
222 changes: 222 additions & 0 deletions predict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,222 @@
import tempfile
from pathlib import Path
import argparse
import shutil
import os
import glob
import cv2
import cog
from run import run_cmd


class Predictor(cog.Predictor):
def setup(self):
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_folder", type=str, default="input/cog_temp", help="Test images"
)
parser.add_argument(
"--output_folder",
type=str,
default="output",
help="Restored images, please use the absolute path",
)
parser.add_argument("--GPU", type=str, default="0", help="0,1,2")
parser.add_argument(
"--checkpoint_name",
type=str,
default="Setting_9_epoch_100",
help="choose which checkpoint",
)
self.opts = parser.parse_args("")
self.basepath = os.getcwd()
self.opts.input_folder = os.path.join(self.basepath, self.opts.input_folder)
self.opts.output_folder = os.path.join(self.basepath, self.opts.output_folder)
os.makedirs(self.opts.input_folder, exist_ok=True)
os.makedirs(self.opts.output_folder, exist_ok=True)

@cog.input("image", type=Path, help="input image")
@cog.input(
"HR",
type=bool,
default=False,
help="whether the input image is high-resolution",
)
@cog.input(
"with_scratch",
type=bool,
default=False,
help="whether the input image is scratched",
)
def predict(self, image, HR=False, with_scratch=False):
try:
os.chdir(self.basepath)
input_path = os.path.join(self.opts.input_folder, os.path.basename(image))
shutil.copy(str(image), input_path)

gpu1 = self.opts.GPU

## Stage 1: Overall Quality Improve
print("Running Stage 1: Overall restoration")
os.chdir("./Global")
stage_1_input_dir = self.opts.input_folder
stage_1_output_dir = os.path.join(
self.opts.output_folder, "stage_1_restore_output"
)

os.makedirs(stage_1_output_dir, exist_ok=True)

if not with_scratch:

stage_1_command = (
"python test.py --test_mode Full --Quality_restore --test_input "
+ stage_1_input_dir
+ " --outputs_dir "
+ stage_1_output_dir
+ " --gpu_ids "
+ gpu1
)
run_cmd(stage_1_command)
else:

mask_dir = os.path.join(stage_1_output_dir, "masks")
new_input = os.path.join(mask_dir, "input")
new_mask = os.path.join(mask_dir, "mask")
stage_1_command_1 = (
"python detection.py --test_path "
+ stage_1_input_dir
+ " --output_dir "
+ mask_dir
+ " --input_size full_size"
+ " --GPU "
+ gpu1
)

if HR:
HR_suffix = " --HR"
else:
HR_suffix = ""

stage_1_command_2 = (
"python test.py --Scratch_and_Quality_restore --test_input "
+ new_input
+ " --test_mask "
+ new_mask
+ " --outputs_dir "
+ stage_1_output_dir
+ " --gpu_ids "
+ gpu1
+ HR_suffix
)

run_cmd(stage_1_command_1)
run_cmd(stage_1_command_2)

## Solve the case when there is no face in the old photo
stage_1_results = os.path.join(stage_1_output_dir, "restored_image")
stage_4_output_dir = os.path.join(self.opts.output_folder, "final_output")
os.makedirs(stage_4_output_dir, exist_ok=True)
for x in os.listdir(stage_1_results):
img_dir = os.path.join(stage_1_results, x)
shutil.copy(img_dir, stage_4_output_dir)

print("Finish Stage 1 ...")
print("\n")

## Stage 2: Face Detection

print("Running Stage 2: Face Detection")
os.chdir(".././Face_Detection")
stage_2_input_dir = os.path.join(stage_1_output_dir, "restored_image")
stage_2_output_dir = os.path.join(
self.opts.output_folder, "stage_2_detection_output"
)
os.makedirs(stage_2_output_dir, exist_ok=True)

stage_2_command = (
"python detect_all_dlib_HR.py --url "
+ stage_2_input_dir
+ " --save_url "
+ stage_2_output_dir
)

run_cmd(stage_2_command)
print("Finish Stage 2 ...")
print("\n")

## Stage 3: Face Restore
print("Running Stage 3: Face Enhancement")
os.chdir(".././Face_Enhancement")
stage_3_input_mask = "./"
stage_3_input_face = stage_2_output_dir
stage_3_output_dir = os.path.join(
self.opts.output_folder, "stage_3_face_output"
)

os.makedirs(stage_3_output_dir, exist_ok=True)

self.opts.checkpoint_name = "FaceSR_512"
stage_3_command = (
"python test_face.py --old_face_folder "
+ stage_3_input_face
+ " --old_face_label_folder "
+ stage_3_input_mask
+ " --tensorboard_log --name "
+ self.opts.checkpoint_name
+ " --gpu_ids "
+ gpu1
+ " --load_size 512 --label_nc 18 --no_instance --preprocess_mode resize --batchSize 1 --results_dir "
+ stage_3_output_dir
+ " --no_parsing_map"
)

run_cmd(stage_3_command)
print("Finish Stage 3 ...")
print("\n")

## Stage 4: Warp back
print("Running Stage 4: Blending")
os.chdir(".././Face_Detection")
stage_4_input_image_dir = os.path.join(stage_1_output_dir, "restored_image")
stage_4_input_face_dir = os.path.join(stage_3_output_dir, "each_img")
stage_4_output_dir = os.path.join(self.opts.output_folder, "final_output")
os.makedirs(stage_4_output_dir, exist_ok=True)

stage_4_command = (
"python align_warp_back_multiple_dlib_HR.py --origin_url "
+ stage_4_input_image_dir
+ " --replace_url "
+ stage_4_input_face_dir
+ " --save_url "
+ stage_4_output_dir
)

run_cmd(stage_4_command)
print("Finish Stage 4 ...")
print("\n")

print("All the processing is done. Please check the results.")

final_output = os.listdir(os.path.join(self.opts.output_folder, "final_output"))[0]

image_restore = cv2.imread(os.path.join(self.opts.output_folder, "final_output", final_output))

out_path = Path(tempfile.mkdtemp()) / "out.png"

cv2.imwrite(str(out_path), image_restore)
finally:
clean_folder(self.opts.input_folder)
clean_folder(self.opts.output_folder)
return out_path


def clean_folder(folder):
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason:{e}")

0 comments on commit bce7d62

Please sign in to comment.