Skip to content

GCP architecture to combine F1 racing data with social sentiment per race. Architecture is based on BigQuerry, Kafka and Google Looker Studio.

Notifications You must be signed in to change notification settings

michimalek/f1-sentiment-analysis

Repository files navigation

DE Assignment 2 - Group 4

To deploy this on GCS, execute the following steps;

  • Installing using Docker & Docker compose using sh
sh docker.sh
sh docker_compose.sh
  • Create the folders notebooks, checkpoint, and data at your VM with read_write permissions
mkdir notebooks
mkdir data
mkdir checkpoint
sudo chmod 777 notebooks/
sudo chmod 777 data/
sudo chmod 777 checkpoint/
  • Change the volume paths in the docker_compose.yml file
  • Change the ip address in the .env
cd 'work-dir'/deployment/
touch .env
nano .env
  • Start the cluster
sudo docker-compose build
sudo docker-compose up -d
  • Create firewall rules
gcloud compute firewall-rules create jupyter-port --allow tcp:8888
gcloud compute firewall-rules create spark-master-port --allow tcp:7077
gcloud compute firewall-rules create spark-master-ui-port --allow tcp:8080
gcloud compute firewall-rules create spark-driver-ui-port --allow tcp:4040
gcloud compute firewall-rules create spark-worker-1-ui-port --allow tcp:8081
gcloud compute firewall-rules create spark-worker-2-ui-port --allow tcp:8082
gcloud compute firewall-rules create kafka-port --allow tcp:9092
  • Open Jupyter lab using the token, printed in the logs
sudo docker logs spark-driver-app
  • Upload the notebooks from the repo to the /notebooks directory

About

GCP architecture to combine F1 racing data with social sentiment per race. Architecture is based on BigQuerry, Kafka and Google Looker Studio.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •