Skip to content

📷 Repository for implementation Raspberry Pi & TensorFlow Lite Python API to play AI apps (VEHICLE analytics). Tech stack: Python & Docker. Source C++: https://gitlab.com/mheriyanto/play-with-tflite-dev

Notifications You must be signed in to change notification settings

mheriyanto/play-with-tflite

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hits contributions welcome GitHub contributors GitHub last commit GitHub top language GitHub language count GitHub repo size GitHub code size in bytes LinkedIn

play-with-tflite

Repository for implementation Raspberry Pi + TensorFlow Lite to develop AI apps: Vehicle analytics.

Tools

Tested Hardware

  • RasberryPi 4 Model B here, RAM: 4 GB and Processor 4-core @ 1.5 GHz
  • microSD Card 64 GB
  • 5M USB Retractable Clip 120 Degrees WebCam Web Wide-angle Camera Laptop U7 Mini or Raspi Camera

Tested Software

  • OS Raspbian 10 (Buster) 32 bit armv7l, install on RasberriPi 4
  • TensorFlow Lite library
  • Python min. ver. 3.5 (3.7 recommended)

Getting Started

  • Install TensorFlow Lite library (TensorFlow Lite APIs Python)
$ pip3 install https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp37-cp37m-linux_armv7l.whl

Usage

Image Classification

$ git clone https://github.com/mheriyanto/play-with-tflite.git
$ cd play-with-tflite
$ cd examples
$ python3 classify.py --source /dev/video0 --model ../saved/models/mobilenet_v1_1.0_224_quant.tflite --labels ../saved/models/labels_mobilenet_quant_v1_224.txt

# Open on your browser and check http://0.0.0.0:5000/

Object Detection

$ python3 detection.py --source /dev/video0 --model ../saved/models/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.tflite --labels ../saved/models/coco_labels.txt

# Open on your browser and check http://0.0.0.0:5000/

Reference

About

📷 Repository for implementation Raspberry Pi & TensorFlow Lite Python API to play AI apps (VEHICLE analytics). Tech stack: Python & Docker. Source C++: https://gitlab.com/mheriyanto/play-with-tflite-dev

Topics

Resources

Stars

Watchers

Forks