forked from pytorch/executorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
VulkanQuantizer for weight-only quantization on linear
Differential Revision: D61243540 Pull Request resolved: pytorch#4707
- Loading branch information
1 parent
35da5bf
commit caadd81
Showing
2 changed files
with
133 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
load("@fbcode_macros//build_defs:python_library.bzl", "python_library") | ||
|
||
oncall("executorch") | ||
|
||
python_library( | ||
name = "vulkan_quantizer", | ||
srcs = [ | ||
"vulkan_quantizer.py", | ||
], | ||
deps = [ | ||
"//caffe2:torch", | ||
], | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
# pyre-strict | ||
|
||
from __future__ import annotations | ||
|
||
import functools | ||
from typing import Any, Callable, Dict, Optional | ||
|
||
import torch | ||
from torch.ao.quantization.observer import MinMaxObserver, PerChannelMinMaxObserver | ||
from torch.ao.quantization.qconfig import _ObserverOrFakeQuantizeConstructor | ||
from torch.ao.quantization.quantizer import QuantizationSpec, Quantizer | ||
from torch.ao.quantization.quantizer.xnnpack_quantizer_utils import ( | ||
_convert_scalars_to_attrs, | ||
OP_TO_ANNOTATOR, | ||
propagate_annotation, | ||
QuantizationConfig, | ||
) | ||
from torch.fx import Node | ||
|
||
|
||
__all__ = [ | ||
"VulkanQuantizer", | ||
"get_weight_quantization_config", | ||
] | ||
|
||
|
||
@functools.lru_cache | ||
def get_weight_quantization_config( | ||
is_per_channel: bool = True, | ||
weight_qmin: int = -128, | ||
weight_qmax: int = 127, | ||
) -> QuantizationConfig: | ||
|
||
weight_qscheme = ( | ||
torch.per_channel_symmetric if is_per_channel else torch.per_tensor_symmetric | ||
) | ||
weight_observer_or_fake_quant_ctr: _ObserverOrFakeQuantizeConstructor = ( | ||
PerChannelMinMaxObserver if is_per_channel else MinMaxObserver | ||
) | ||
extra_args: Dict[str, Any] = {"eps": 2**-12} | ||
|
||
weight_quantization_spec = QuantizationSpec( | ||
dtype=torch.int8, | ||
quant_min=weight_qmin, | ||
quant_max=weight_qmax, | ||
qscheme=weight_qscheme, | ||
ch_axis=0, | ||
is_dynamic=False, | ||
observer_or_fake_quant_ctr=weight_observer_or_fake_quant_ctr.with_args( | ||
**extra_args | ||
), | ||
) | ||
|
||
quantization_config = QuantizationConfig( | ||
input_activation=None, | ||
output_activation=None, | ||
weight=weight_quantization_spec, | ||
bias=None, | ||
is_qat=False, | ||
) | ||
return quantization_config | ||
|
||
|
||
_SUPPORTED_OPS = [ | ||
"linear", | ||
] | ||
|
||
|
||
class VulkanQuantizer(Quantizer): | ||
|
||
def __init__(self) -> None: | ||
super().__init__() | ||
self.global_config: Optional[QuantizationConfig] = None | ||
|
||
def set_global(self, quantization_config: QuantizationConfig) -> VulkanQuantizer: | ||
self.global_config = quantization_config | ||
return self | ||
|
||
def transform_for_annotation( | ||
self, model: torch.fx.GraphModule | ||
) -> torch.fx.GraphModule: | ||
"""Transforms scalar values to tensor attributes""" | ||
return _convert_scalars_to_attrs(model) | ||
|
||
def annotate(self, model: torch.fx.GraphModule) -> torch.fx.GraphModule: | ||
# currently only support static quant on Vulkan | ||
model = self._annotate_for_static_quantization_config(model) | ||
propagate_annotation(model) | ||
return model | ||
|
||
def _annotate_all_static_patterns( | ||
self, | ||
model: torch.fx.GraphModule, | ||
quantization_config: Optional[QuantizationConfig], | ||
filter_fn: Optional[Callable[[Node], bool]] = None, | ||
) -> torch.fx.GraphModule: | ||
if quantization_config is None: | ||
return model | ||
|
||
for op in _SUPPORTED_OPS: | ||
OP_TO_ANNOTATOR[op](model, quantization_config, filter_fn) | ||
return model | ||
|
||
def _annotate_for_static_quantization_config( | ||
self, model: torch.fx.GraphModule | ||
) -> torch.fx.GraphModule: | ||
self._annotate_all_static_patterns( | ||
model, | ||
self.global_config, | ||
) | ||
return model | ||
|
||
def validate(self, model: torch.fx.GraphModule) -> None: | ||
pass |