Skip to content

Segmentation of human eye capillaries based on ophthalmic slit lamp images using UNet++ | Цифровой Прорыв 2022

Notifications You must be signed in to change notification settings

mdvdv/hackathon-2022-microcirculation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

microcirculation

Microcirculation

Segmentation of human eye capillaries based on ophthalmic slit lamp images using UNet++

  • Anatoly Medvedev
  • ID: 1603212269

Table of Contents

Environment

Python PyTorch

Training

Dataset Structure:

data/
    |
    train_dataset/
    |            |
    |            1.png
    |            1.geojson
    |            ...
    eye_test/
            |
            784.png
            ...

Model was trained in parallel on 2 GPUs Tesla V100 32GB. To train model, change the training flag in training.py to True and run it in the background:

$ nohup python training.py > log.txt &

Training results:

Model Backbone F1 Score
UNet++ ResNet-50 0.512379
ResNet-101 0.525109

Usage

Follow steps in demo.ipynb to learn more about the model, image preparation, and model validation.

Reference

  • Zhou, Z. et al. (2018) "UNet++: A Nested U-Net Architecture for Medical Image Segmentation". arXiv. doi: 10.48550/ARXIV.1807.10165

About

Segmentation of human eye capillaries based on ophthalmic slit lamp images using UNet++ | Цифровой Прорыв 2022

Resources

Stars

Watchers

Forks