Skip to content

Paper list and datasets for industrial image anomaly detection (defect detection). 工业异常检测(瑕疵检测)论文及数据集检索库。

Notifications You must be signed in to change notification settings

mcpeixoto/awesome-industrial-anomaly-detection

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Awesome Industrial Anomaly Detection Awesome

We discuss public datasets and related studies in detail. Welcome to read our paper and make comments.

[中文版]我们详细分析了相关研究和公开数据集。欢迎阅读我们的论文并提出意见。

Deep Industrial Image Anomaly Detection: A Survey (Accepted by Machine Intelligence Research [CiteScore 8.4 Q1])

We will keep focusing on this field and updating relevant information.

Keywords: anomaly detection, anomaly segmentation, industrial image, defect detection

[Main Page] [Survey] [Benchmark] [Result]

SOTA methods with code

Recent research

NeurIPS 2023

ACM MM 2023

  • EasyNet: An Easy Network for 3D Industrial Anomaly Detection [ACM MM 2023]

ICCV 2023

  • Focus the Discrepancy: Intra- and Inter-Correlation Learning for Image Anomaly Detection [ICCV 2023][code]
  • Remembering Normality: Memory-guided Knowledge Distillation for Unsupervised Anomaly Detection [ICCV 2023]
  • Unsupervised Surface Anomaly Detection with Diffusion Probabilistic Model [ICCV 2023]
  • PNI : Industrial Anomaly Detection using Position and Neighborhood Information [ICCV 2023][code]
  • Anomaly Detection using Score-based Perturbation Resilience [ICCV 2023]
  • Template-guided Hierarchical Feature Restoration for Anomaly Detection [ICCV 2023]
  • Focus the Discrepancy: Intra- and Inter-Correlation Learning for Image Anomaly Detection [ICCV 2023][code]
  • Anomaly Detection under Distribution Shift [ICCV 2023][code]
  • FastRecon: Few-shot Industrial Anomaly Detection via Fast Feature Reconstruction [ICCV 2023][code comming soon]
  • Inter-Realization Channels: Unsupervised Anomaly Detection Beyond One-Class Classification [ICCV 2023][code]
  • Removing Anomalies as Noises for Industrial Defect Localization [ICCV 2023]

CVPR 2023

SAM segment anything

  • Segment Anything Is Not Always Perfect: An Investigation of SAM on Different Real-world Applications [2023 SAM tech report]
  • SAM Struggles in Concealed Scenes -- Empirical Study on "Segment Anything" [2023 SAM tech report]
  • Segment Any Anomaly without Training via Hybrid Prompt Regularization [2023] [code]
  • Application of Segment Anything Model for Civil Infrastructure Defect Assessment [2023 SAM tech report]

ICLR 2023

  • Pushing the Limits of Fewshot Anomaly Detection in Industry Vision: Graphcore [ICLR 2023]
  • RGI: robust GAN-inversion for mask-free image inpainting and unsupervised pixel-wise anomaly detection [ICLR 2023]

Others

  • Global Context Aggregation Network for Lightweight Saliency Detection of Surface Defects [2023]
  • Decision Fusion Network with Perception Fine-tuning for Defect Classification [2023]
  • FAIR: Frequency-aware Image Restoration for Industrial Visual Anomaly Detection [2023][code comming soon]
  • AnoVL: Adapting Vision-Language Models for Unified Zero-shot Anomaly Localization [2023][code]
  • A Comprehensive Augmentation Framework for Anomaly Detection [2023]
  • AnomalyGPT: Detecting Industrial Anomalies using Large Vision-Language Models [2023][code][project page]
  • REB: Reducing Biases in Representation for Industrial Anomaly Detection [2023][code coming soon]
  • End-to-End Augmentation Hyperparameter Tuning for Self-Supervised Anomaly Detection [2023]
  • CVPR 1st workshop on Vision-based InduStrial InspectiON [CVPR 2023 Workshop] [data link]

Paper Tree (Classification of representative methods)

Timeline

Paper list for industrial image anomaly detection

Related Survey, Benchmark and Framework

  • A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure [2015]
  • Visual-based defect detection and classification approaches for industrial applications: a survey [2020]
  • Deep Learning for Unsupervised Anomaly Localization in Industrial Images: A Survey [TIM 2022]
  • A Survey on Unsupervised Industrial Anomaly Detection Algorithms [2022]
  • A Survey of Methods for Automated Quality Control Based on Images [IJCV 2023][github page]
  • Benchmarking Unsupervised Anomaly Detection and Localization [2022]
  • IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing [2023][code]
  • A Deep Learning-based Software for Manufacturing Defect Inspection [TII 2017][code]
  • Anomalib: A Deep Learning Library for Anomaly Detection [code]
  • Ph.D. thesis of Paul Bergmann(The first author of MVTec AD series) [2022]
  • CVPR 2023 Tutorial on "Recent Advances in Anomaly Detection" [CVPR Workshop 2023][video]

2 Unsupervised AD

2.1 Feature-Embedding-based Methods

2.1.1 Teacher-Student

  • Contextual Affinity Distillation for Image Anomaly Detection [2023]
  • Revisiting Reverse Distillation for Anomaly Detection [CVPR 2023] [code]
  • Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings [CVPR 2020]
  • Multiresolution knowledge distillation for anomaly detection [CVPR 2021]
  • Glancing at the Patch: Anomaly Localization With Global and Local Feature Comparison [CVPR 2021]
  • Reconstruction Student with Attention for Student-Teacher Pyramid Matching [2021]
  • Student-Teacher Feature Pyramid Matching for Anomaly Detection [2021][code]
  • PFM and PEFM for Image Anomaly Detection and Segmentation [CASE 2022] [TII 2022][code]
  • Reconstructed Student-Teacher and Discriminative Networks for Anomaly Detection [2022]
  • Anomaly Detection via Reverse Distillation from One-Class Embedding [CVPR 2022][code]
  • Asymmetric Student-Teacher Networks for Industrial Anomaly Detection [WACV 2022][code]
  • Informative knowledge distillation for image anomaly segmentation [2022][code]

2.1.2 One-Class Classification (OCC)

  • Patch svdd: Patch-level svdd for anomaly detection and segmentation [ACCV 2020]
  • Anomaly detection using improved deep SVDD model with data structure preservation [2021]
  • A Semantic-Enhanced Method Based On Deep SVDD for Pixel-Wise Anomaly Detection [2021]
  • MOCCA: Multilayer One-Class Classification for Anomaly Detection [2021]
  • Defect Detection of Metal Nuts Applying Convolutional Neural Networks [2021]
  • Panda: Adapting pretrained features for anomaly detection and segmentation [2021]
  • Mean-shifted contrastive loss for anomaly detection [2021]
  • Learning and Evaluating Representations for Deep One-Class Classification [2020]
  • Self-supervised learning for anomaly detection with dynamic local augmentation [2021]
  • Contrastive Predictive Coding for Anomaly Detection [2021]
  • Cutpaste: Self-supervised learning for anomaly detection and localization [ICCV 2021][unofficial code]
  • Consistent estimation of the max-flow problem: Towards unsupervised image segmentation [2020]
  • MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities [2022][unofficial code]
  • SimpleNet: A Simple Network for Image Anomaly Detection and Localization [CVPR 2023][code]
  • End-to-End Augmentation Hyperparameter Tuning for Self-Supervised Anomaly Detection [2023]

2.1.3 Distribution-Map

  • Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity [Sensors 2018]
  • A Multi-Scale A Contrario method for Unsupervised Image Anomaly Detection [2021]
  • Modeling the distribution of normal data in pre-trained deep features for anomaly detection [2021]
  • Transfer Learning Gaussian Anomaly Detection by Fine-Tuning Representations [2021]
  • PEDENet: Image anomaly localization via patch embedding and density estimation [2022]
  • Unsupervised image anomaly detection and segmentation based on pre-trained feature mapping [2022]
  • Position Encoding Enhanced Feature Mapping for Image Anomaly Detection [2022][code]
  • Focus your distribution: Coarse-to-fine non-contrastive learning for anomaly detection and localization [ICME 2022]
  • Anomaly Detection of Defect using Energy of Point Pattern Features within Random Finite Set Framework [2021][code]
  • Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows [2021][unofficial code]
  • Same same but differnet: Semi-supervised defect detection with normalizing flows [WACV 2021][code]
  • Fully convolutional cross-scale-flows for image-based defect detection [WACV 2022][code]
  • Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows [WACV 2022][code]
  • CAINNFlow: Convolutional block Attention modules and Invertible Neural Networks Flow for anomaly detection and localization tasks [2022]
  • AltUB: Alternating Training Method to Update Base Distribution of Normalizing Flow for Anomaly Detection [2022]
  • Collaborative Discrepancy Optimization for Reliable Image Anomaly Localization [TII 2023][code]
  • PyramidFlow: High-Resolution Defect Contrastive Localization using Pyramid Normalizing Flow [CVPR 2023][code]

2.1.4 Memory Bank

  • ReConPatch: Contrastive Patch Representation Learning for Industrial Anomaly Detection [2023]
  • Sub-image anomaly detection with deep pyramid correspondences [2020]
  • Semi-orthogonal embedding for efficient unsupervised anomaly segmentation [2021]
  • Anomaly Detection Via Self-Organizing Map [2021]
  • PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization [ICPR 2021][unofficial code]
  • Industrial Image Anomaly Localization Based on Gaussian Clustering of Pretrained Feature [2021]
  • Towards total recall in industrial anomaly detection[CVPR 2022][code]
  • CFA: Coupled-Hypersphere-Based Feature Adaptation for Target-Oriented Anomaly Localization[2022][code]
  • FAPM: Fast Adaptive Patch Memory for Real-time Industrial Anomaly Detection[2022]
  • N-pad: Neighboring Pixel-based Industrial Anomaly Detection [2022]
  • Image Anomaly Detection and Localization with Position and Neighborhood Information [2022]
  • Multi-scale patch-based representation learning for image anomaly detection and segmentation [2022]
  • SPot-the-Difference Self-supervised Pre-training for Anomaly Detection and Segmentation [ECCV 2022]
  • Diversity-Measurable Anomaly Detection [CVPR 2023]
  • SelFormaly: Towards Task-Agnostic Unified Anomaly Detection[2023]
  • REB: Reducing Biases in Representation for Industrial Anomaly Detection [2023][code coming soon]

2.2 Reconstruction-Based Methods

2.2.1 Autoencoder (AE)

  • Improving unsupervised defect segmentation by applying structural similarity to autoencoders [2018]
  • Automatic Fabric Defect Detection with a Multi-Scale Convolutional Denoising Autoencoder Network Model [Sensors 2018]
  • An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces [TIM 2018]
  • Unsupervised anomaly detection using style distillation [2020]
  • Unsupervised two-stage anomaly detection [2021]
  • Dfr: Deep feature reconstruction for unsupervised anomaly segmentation [Neurocomputing 2020]
  • Unsupervised anomaly segmentation via multilevel image reconstruction and adaptive attention-level transition [2021]
  • Encoding structure-texture relation with p-net for anomaly detection in retinal images [2020]
  • Improved anomaly detection by training an autoencoder with skip connections on images corrupted with stain-shaped noise [2021]
  • Unsupervised anomaly detection for surface defects with dual-siamese network [2022]
  • Divide-and-assemble: Learning block-wise memory for unsupervised anomaly detection [ICCV 2021]
  • Reconstruction from edge image combined with color and gradient difference for industrial surface anomaly detection [2022][code]
  • Spatial Contrastive Learning for Anomaly Detection and Localization [2022]
  • Superpixel masking and inpainting for self-supervised anomaly detection [BMVC 2020]
  • Iterative image inpainting with structural similarity mask for anomaly detection [2020]
  • Self-Supervised Masking for Unsupervised Anomaly Detection and Localization [2022]
  • Reconstruction by inpainting for visual anomaly detection [PR 2021]
  • Draem-a discriminatively trained reconstruction embedding for surface anomaly detection [ICCV 2021][code]
  • DSR: A dual subspace re-projection network for surface anomaly detection [ECCV 2022][code]
  • Natural Synthetic Anomalies for Self-supervised Anomaly Detection and Localization [ECCV 2022][code]
  • Self-Supervised Training with Autoencoders for Visual Anomaly Detection [2022]
  • Self-supervised predictive convolutional attentive block for anomaly detection [CVPR 2022 oral][code]
  • Self-Supervised Masked Convolutional Transformer Block for Anomaly Detection [TPAMI 2022][code]
  • Iterative energy-based projection on a normal data manifold for anomaly localization [2019]
  • Towards visually explaining variational autoencoders [2020]
  • Deep generative model using unregularized score for anomaly detection with heterogeneous complexity [2020]
  • Anomaly localization by modeling perceptual features [2020]
  • Image anomaly detection using normal data only by latent space resampling [2020]
  • Noise-to-Norm Reconstruction for Industrial Anomaly Detection and Localization [2023]
  • Patch-wise Auto-Encoder for Visual Anomaly Detection [2023]
  • FAIR: Frequency-aware Image Restoration for Industrial Visual Anomaly Detection [2023][code comming soon]

2.2.2 Generative Adversarial Networks (GANs)

  • Omni-frequency Channel-selection Representations for Unsupervised Anomaly Detection [2022][code]
  • Learning semantic context from normal samples for unsupervised anomaly detection [AAAI 2021]
  • Anoseg: Anomaly segmentation network using self-supervised learning [2021]
  • A Surface Defect Detection Method Based on Positive Samples [PRICAI 2018]

2.2.3 Transformer

  • VT-ADL: A vision transformer network for image anomaly detection and localization [ISIE 2021]
  • ADTR: Anomaly Detection Transformer with Feature Reconstruction [2022]
  • AnoViT: Unsupervised Anomaly Detection and Localization With Vision Transformer-Based Encoder-Decoder [2022]
  • HaloAE: An HaloNet based Local Transformer Auto-Encoder for Anomaly Detection and Localization [2022]
  • Inpainting transformer for anomaly detection [ICIAP 2022]
  • Masked Swin Transformer Unet for Industrial Anomaly Detection [2022]
  • Masked Transformer for image Anomaly Localization [TII 2022]

2.2.4 Diffusion Model

  • Anomaly Detection with Conditioned Denoising Diffusion Models [2023]
  • AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise [CVPR Workshop 2022]
  • Unsupervised Visual Defect Detection with Score-Based Generative Model[2022]
  • DiffusionAD: Denoising Diffusion for Anomaly Detection [2023]

2.3 Supervised AD

More Normal samples With (Less Abnormal Samples or Weak Labels)

  • Neural batch sampling with reinforcement learning for semi-supervised anomaly detection [ECCV 2020]
  • Explainable Deep One-Class Classification [ICLR 2020]
  • Attention guided anomaly localization in images [ECCV 2020]
  • Mixed supervision for surface-defect detection: From weakly to fully supervised learning [2021]
  • Explainable deep few-shot anomaly detection with deviation networks [2021]
  • Catching Both Gray and Black Swans: Open-set Supervised Anomaly Detection [CVPR 2022]
  • Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly Types[WACV 2023]
  • Prototypical Residual Networks for Anomaly Detection and Localization [CVPR 2023]
  • Efficient Anomaly Detection with Budget Annotation Using Semi-Supervised Residual Transformer [2023]

More Abnormal Samples

  • Logit Inducing With Abnormality Capturing for Semi-Supervised Image Anomaly Detection [2022]
  • An effective framework of automated visual surface defect detection for metal parts [2021]
  • Interleaved Deep Artifacts-Aware Attention Mechanism for Concrete Structural Defect Classification [TIP 2021]
  • Reference-based defect detection network [TIP 2021]
  • Fabric defect detection using tactile information [ICRA 2021]
  • A lightweight spatial and temporal multi-feature fusion network for defect detection [TIP 2020]
  • SDD-CNN: Small Data-Driven Convolution Neural Networks for Subtle Roller Defect Inspection [Robotics and Computer-Integrated Manufacturing 2020]
  • A High-Efficiency Fully Convolutional Networks for Pixel-Wise Surface Defect Detection [IEEE Access 2019]
  • SDD-CNN: Small Data-Driven Convolution Neural Networks for Subtle Roller Defect Inspection [Applied Sciences 2019]
  • Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types [CACIE 2018]
  • Detection and segmentation of manufacturing defects with convolutional neural networks and transfer learning [2018]
  • Automatic Metallic Surface Defect Detection and Recognition with Convolutional Neural Networks [Applied Sciences 2018]
  • Real-time Detection of Steel Strip Surface Defects Based on Improved YOLO Detection Network [IFAC-PapersOnLine 2018]
  • Domain adaptation for automatic OLED panel defect detection using adaptive support vector data description [IJCV 2017]
  • Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network [TIM 2017]
  • Deep Active Learning for Civil Infrastructure Defect Detection and Classification Computing in civil engineering 2017
  • A fast and robust convolutional neural network-based defect detection model in product quality control [IJAMT 2017]
  • Defects Detection Based on Deep Learning and Transfer Learning [Metallurgical & Mining Industry 2015]
  • Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection [CIRP annals 2016]
  • Decision Fusion Network with Perception Fine-tuning for Defect Classification [2023]
  • Global Context Aggregation Network for Lightweight Saliency Detection of Surface Defects [2023]

3 Other Research Direction

3.1 Few-Shot AD

  • Learning unsupervised metaformer for anomaly detection [ICCV 2021]
  • Registration based few-shot anomaly detection [ECCV 2022 oral][code]
  • Same same but differnet: Semi-supervised defect detection with normalizing flows [(Distribution)WACV 2021]
  • Towards total recall in industrial anomaly detection [(Memory bank)CVPR 2022]
  • A hierarchical transformation-discriminating generative model for few shot anomaly detection [ICCV 2021]
  • Anomaly detection of defect using energy of point pattern features within random finite set framework [2021]
  • Optimizing PatchCore for Few/many-shot Anomaly Detection [2023][code]
  • AnomalyGPT: Detecting Industrial Anomalies using Large Vision-Language Models [2023][code][project page]

Zero-Shot AD

  • Random Word Data Augmentation with CLIP for Zero-Shot Anomaly Detection [BMVC 2023]
  • Zero-Shot Batch-Level Anomaly Detection [2023]
  • Zero-shot versus Many-shot: Unsupervised Texture Anomaly Detection [WACV 2023]
  • MAEDAY: MAE for few and zero shot AnomalY-Detection [2022]
  • WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation [CVPR 2023]
  • Segment Any Anomaly without Training via Hybrid Prompt Regularization [2023] [code]
  • Anomaly Detection in an Open World by a Neuro-symbolic Program on Zero-shot Symbols [IROS 2022 Workshop]
  • AnoVL: Adapting Vision-Language Models for Unified Zero-shot Anomaly Localization [2023][code]

3.2 Noisy AD

  • Trustmae: A noise-resilient defect classification framework using memory-augmented auto-encoders with trust regions [WACV 2021]
  • Self-Supervise, Refine, Repeat: Improving Unsupervised Anomaly Detection [TMLR 2021]
  • Data refinement for fully unsupervised visual inspection using pre-trained networks [2022]
  • Latent Outlier Exposure for Anomaly Detection with Contaminated Data [ICML 2022]
  • Deep one-class classification via interpolated gaussian descriptor [AAAI 2022 oral][code]
  • SoftPatch: Unsupervised Anomaly Detection with Noisy Data [NeurIPS 2022])[code]

3.3 Anomaly Synthetic

  • Cutpaste: Self-supervised learning for anomaly detection and localization [(OCC)ICCV 2021][unofficial code]
  • Draem-a discriminatively trained reconstruction embedding for surface anomaly detection [(Reconstruction AE)ICCV 2021][code]
  • MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities [(OCC)2022][unofficial code]
  • A High-Efficiency Fully Convolutional Networks for Pixel-Wise Surface Defect Detection [IEEE Access 2019]
  • Multistage GAN for fabric defect detection [2019]
  • Gan-based defect synthesis for anomaly detection in fabrics [2020]
  • Defect image sample generation with GAN for improving defect recognition [2020]
  • Defective samples simulation through neural style transfer for automatic surface defect segment [2020]
  • A simulation-based few samples learning method for surface defect segmentation [2020]
  • Synthetic data augmentation for surface defect detection and classification using deep learning [2020]
  • Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation [BMVC 2022]
  • Defect-GAN: High-fidelity defect synthesis for automated defect inspectio [2021]
  • EID-GAN: Generative Adversarial Nets for Extremely Imbalanced Data Augmentation[TII 2022]

3.4 3D AD

  • Anomaly detection in 3d point clouds using deep geometric descriptors [WACV 2022]
  • Back to the feature: classical 3d features are (almost) all you need for 3D anomaly detection [2022][code]
  • Anomaly Detection Requires Better Representations [2022]
  • Asymmetric Student-Teacher Networks for Industrial Anomaly Detection [WACV 2022]
  • Multimodal Industrial Anomaly Detection via Hybrid Fusion [CVPR 2023]
  • Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection [2023][code]
  • Real3D-AD: A Dataset of Point Cloud Anomaly Detection [NeurIPS 2023 homepage][paper][data]

3.5 Continual AD

  • Towards Total Online Unsupervised Anomaly Detection and Localization in Industrial Vision [2023]
  • Towards Continual Adaptation in Industrial Anomaly Detection [ACM MM 2022]

3.6 Uniform AD

  • A Unified Model for Multi-class Anomaly Detection [NIPS 2022] [code]
  • OmniAL A unifiled CNN framework for unsupervised anomaly localization [CVPR 2023]
  • SelFormaly: Towards Task-Agnostic Unified Anomaly Detection[2023]

3.7 Logical AD

  • Beyond Dents and Scratches: Logical Constraints in Unsupervised Anomaly Detection and Localization [IJCV 2022]
  • Set Features for Fine-grained Anomaly Detection[2023] [code]
  • SLSG: Industrial Image Anomaly Detection by Learning Better Feature Embeddings and One-Class Classification [2023]
  • EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies [2023]
  • Contextual Affinity Distillation for Image Anomaly Detection [2023]
  • REB: Reducing Biases in Representation for Industrial Anomaly Detection [2023][code coming soon]

4 Dataset

  • (NEU surface defect dataset)A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects [2013] [data]
  • (Steel tube dataset)Deep learning based steel pipe weld defect detection [2021] [data]
  • (Steel defect dataset)Severstal: Steel Defect Detection [data 2019]
  • (NanoTwice)Defect detection in SEM images of nanofibrous materials [TII 2016] [data]
  • (GDXray)GDXray: The database of X-ray images for nondestructive testing [2015] [data]
  • (DEEP PCB)Online PCB defect detector on a new PCB defect dataset [2019] [data]
  • (Fabric dataset)Fabric inspection based on the Elo rating method [PR 2016]
  • (KolektorSDD)Segmentation-based deep-learning approach for surface-defect detection [Journal of Intelligent Manufacturing] [data]
  • (KolektorSDD2)Mixed supervision for surface-defect detection: From weakly to fully supervised learning [Computers in Industry 2021] [data]
  • (RSDD)A hierarchical extractor-based visual rail surface inspection system [2017]
  • (Eyecandies)The Eyecandies Dataset for Unsupervised Multimodal Anomaly Detection and Localization [ACCV 2022] [data]
  • (MVTec AD)MVTec AD: A comprehensive real-world dataset for unsupervised anomaly detection [CVPR 2019] [IJCV 2021] [data]
  • (MVTec 3D-AD)The mvtec 3d-ad dataset for unsupervised 3d anomaly detection and localization [VISAPP 2021] [data]
  • (MVTec LOCO-AD)Beyond Dents and Scratches: Logical Constraints in Unsupervised Anomaly Detection and Localization [IJCV 2022] [data]
  • (MPDD)Deep learning-based defect detection of metal parts: evaluating current methods in complex conditions [ICUMT 2021] [data]
  • (BTAD)VT-ADL: A vision transformer network for image anomaly detection and localization [2021] [data]
  • (VisA)SPot-the-Difference Self-supervised Pre-training for Anomaly Detection and Segmentation [ECCV 2022] [data]
  • (MTD)Surface defect saliency of magnetic tile [2020] [data]
  • (DAGM)DAGM dataset [data 2007]
  • (MIAD)Miad:A maintenance inspection dataset for unsupervised anomaly detection [2022] [data]
  • CVPR 1st workshop on Vision-based InduStrial InspectiON [homepage] [data]
  • (SSGD)SSGD: A smartphone screen glass dataset for defect detection [2023][dataset is coming soon]
  • (AeBAD)Industrial Anomaly Detection with Domain Shift: A Real-world Dataset and Masked Multi-scale Reconstruction [2023] [data]
  • VISION Datasets: A Benchmark for Vision-based InduStrial InspectiON [2023] [data]
  • PAD: A Dataset and Benchmark for Pose-agnostic Anomaly Detection [NeurIPS 2023]
  • PKU-GoodsAD: A Supermarket Goods Dataset for Unsupervised Anomaly Detection and Segmentation [2023][data]
  • Real3D-AD: A Dataset of Point Cloud Anomaly Detection [NeurIPS 2023 homepage][paper][data]

BibTex Citation

If you find this paper and repository useful, please cite our paper☺️.

@article{liu2023deep,
  title={Deep Industrial Image Anomaly Detection: A Survey},
  author={Liu, Jiaqi and Xie, Guoyang and Wang, Jingbao and Li, Shangnian and Wang, Chengjie and Zheng, Feng and Jin, Yaochu},
  journal={arXiv e-prints},
  pages={arXiv--2301},
  year={2023}
}

About

Paper list and datasets for industrial image anomaly detection (defect detection). 工业异常检测(瑕疵检测)论文及数据集检索库。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published