The content of this repository allows to run three machine learning demos.
- Clone this repo to a directory of your choice
- Create the docker images for the demos
- Run the demos
- The three demos cover different areas of machine learning
- Natural Language Processing
- Pattern Recognition
- Outlier Detection
- Each demo shows a different Java toolkit
- Mallet
- Deeplearning4j
- Standalone Java code and Surus
- Everything is open and freely available
- Machine learning toolkits
- Data for examples
- Related publications
For each demo a different docker image setup is provided and the content of the repository is organized accordingly.
+-- README.md (the file you are now reading)
|
+-- image_javadev
| +-- Dockerfile (parent dockerfile for java development)
|
+-- image_mallet
| +-- Dockerfile (setup for Mallet toolkit)
| +-- data
| | +-- rt-polarity.* files (movie review data for sentiment analysis example)
| +-- papers
| +-- sentiment analysis paper
|
+-- image_deeplearning4j
| +-- Dockerfile (setup for deeplearning4j toolkit)
| +-- data
| | +-- nist files (handwritten digits)
| | +-- wdbc data (diagnostic breast cancer)
| +-- models
| | +-- pretrained lenet5 deep neural net models at 1, 5, and 10 epochs of the training
| ¦ +-- autoencoder for breast cancer detection (unsupervised learning)
| +-- papers
| | +-- deep neural network papers: lenet, imagenet, facenet
| +-- dl4j-demo
| +-- ... maven project with demo code: LeNetMnistTrainer.java, LeNetMnistTester.java and WDBCAutoencoder.java
|
+-- image_outlier
+-- Dockerfile (setup for outlier detection)
+-- data
| +-- wdbc files (diagnostic breast cancer)
+-- papers
| +-- robust local outlier factor (lof) and robust pca
+-- outlier-demo
+-- ... maven project with demo code LofTester.java
This has the benefit that the demos are independent of each other and allows for simple cleanup once the demos are no longer used.
docker build --tag javadev:latest image_javadev
docker build --tag mallet:latest image_mallet
docker build --tag dl4j:latest image_deeplearning4j
docker build --tag outlier:latest image_outlier
Start a Mallet demo container.
docker run -it mallet:latest
Inside the container check out the data files
wc -l data/*.txt
head -7 data/rt-polarity.test.txt | tail -4 | cut -c -150
Import the data into the Mallet format and train a Naive Bayes classifier
mallet import-file --input data/rt-polarity.train.txt --output data.mallet.sentiment.train
mallet train-classifier --trainer NaiveBayes --training-portion 0.9 --input data.mallet.sentiment.train --output-classifier model.mallet.naivebayes
ls -l
Use the classifier to determine the sentiment of some new data
mallet classify-file --classifier model.mallet.naivebayes --input data/rt-polarity.test.txt --output - | head -7
head -7 data/rt-polarity.test.txt | cut -c -150
Start the deeplearning4j container
docker run -it dl4j:latest
Inside the container check out the data files
ls -l data/*
Training deep neural net takes hours. That's why there are some pretrained nets
ls -l models/*
Evaluate a model. First on 10,000 digits then on a single image
java -cp /usr/share/dl4j-demo/dl4j-demo.jar org.ece16.dl4j.LeNetMnistTester models/lenet.dl4j.epoch10.model
java -cp /usr/share/dl4j-demo/dl4j-demo.jar org.ece16.dl4j.LeNetMnistTester models/lenet.dl4j.epoch10.model 115
You can also train your own net
java -Xmx1024m -cp dl4j-demo.jar org.ece16.dl4j.LeNetMnistTrainer
Start the outlier container
docker run -it outlier:latest
Inside the container check out the data files
ls -l data/wdbc*
Search for outliers in the wdbc data with a varying value of k and thresold 2.4
java -cp /home/demo/outlier-demo/outlier-demo.jar org.ece16.lof.LofTester data/wdbc.data 2.4
Search for outliers in the wdbc data with k=40 and thresold 2.4
java -cp /home/demo/outlier-demo/outlier-demo.jar org.ece16.lof.LofTester data/wdbc.data 2.4 40