-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
239d266
commit 4e24684
Showing
1 changed file
with
167 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
################################################################################################### | ||
# datacake_report_pv.py | ||
# | ||
# This script generates a PDF report from CSV files containing PV inverter data | ||
# which are provided by Datacake. | ||
# | ||
# created: 09/2024 | ||
# | ||
# | ||
# MIT License | ||
# | ||
# Copyright (c) 2024 Matthias Prinke | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
# | ||
# | ||
# History: | ||
# | ||
# 20240902 Created | ||
# | ||
# ToDo: | ||
# - | ||
################################################################################################### | ||
|
||
import os | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
import matplotlib.dates as mdates | ||
from matplotlib.backends.backend_pdf import PdfPages | ||
|
||
COLUMNS = { | ||
'power': 0, | ||
'energytoday': 2, | ||
'energytotal': 3, | ||
|
||
} | ||
|
||
COLORS = { | ||
'power': 'r', | ||
'energytoday': 'lime', | ||
'energytotal': 'limegreen', | ||
} | ||
|
||
WIDTH = 18 / 2.54 | ||
HEIGHT = 27 / 2.54 | ||
|
||
# Directory containing the CSV files | ||
src_dir = "/home/mp/datacake/PV-Inverter/2024" | ||
pdf_file = "/home/mp/datacake/PV-Inverter/pv_inverter_2024.pdf" | ||
last_column = 4 | ||
|
||
# List all CSV files in the directory | ||
csv_files = [f for f in os.listdir(src_dir) if f.endswith('.csv')] | ||
|
||
# Initialize an empty list to store DataFrames | ||
dataframes = [] | ||
|
||
# Read each CSV file | ||
for file in csv_files: | ||
file_path = os.path.join(src_dir, file) | ||
df = pd.read_csv(file_path, skiprows=0, parse_dates=[0], date_parser=lambda x: pd.to_datetime(x, format='%a, %d %b %Y %H:%M:%S')) | ||
|
||
for col in range(1, last_column): | ||
# Replace comma with dot and convert to float | ||
df.iloc[:, col] = df.iloc[:, col].astype(float) | ||
|
||
dataframes.append(df) | ||
|
||
# Combine all DataFrames into a single DataFrame | ||
combined_df = pd.concat(dataframes, ignore_index=True) | ||
|
||
# Set the first column as the index (time) | ||
combined_df.set_index(combined_df.columns[0], inplace=True) | ||
|
||
# Sort the DataFrame by the index (time) | ||
combined_df.sort_index(inplace=True) | ||
|
||
# Print the combined DataFrame | ||
print(combined_df) | ||
|
||
# Remove invalid rows from the combined DataFrame | ||
combined_df.dropna(inplace=True) | ||
|
||
def title_page(plt, pdf, title, font_size=24): | ||
"""Create a title page with the given title.""" | ||
fig, ax = plt.subplots(figsize=(WIDTH, HEIGHT)) | ||
ax.text(0.5, 0.5, title, transform=ax.transAxes, fontsize=font_size, ha='center', va='center') | ||
ax.axis('off') | ||
pdf.savefig(fig) | ||
plt.close(fig) | ||
|
||
def plot_data(plt, pdf, df, columns, title, xlabel, ylabels, colors, avg_label, avg_colors): | ||
"""Plot the data from the DataFrame.""" | ||
fig, axes = plt.subplots(len(columns), 1, figsize=(WIDTH, HEIGHT), layout="tight") | ||
for i in range(len(columns)): | ||
if len(columns) == 1: | ||
ax = axes | ||
else: | ||
ax = axes[i] | ||
ax.plot(df.index, df.iloc[:, columns[i]], label=ylabels[i], color=colors[i]) | ||
if xlabel: | ||
ax.set_xlabel(xlabel) | ||
ax.set_ylabel(ylabels[i]) | ||
ax.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%y %H:%M')) | ||
ax.xaxis.set_major_locator(mdates.AutoDateLocator()) | ||
if i < len(columns) - 1: | ||
# Remove x-axis labels for all but the last subplot | ||
ax.set_xticklabels([]) | ||
if avg_colors[i]: | ||
# Calculate daily average and plot as dashed line | ||
daily_avg = df.iloc[:, columns[i]].resample('D').mean() | ||
ax.plot(daily_avg.index, daily_avg, label=f'{avg_label} {ylabels[i]}', color=avg_colors[i], linestyle='--', linewidth=2) | ||
|
||
ax.legend() | ||
ax.grid(True) | ||
|
||
# Rotate x-axis labels for better readability | ||
plt.setp(ax.xaxis.get_majorticklabels(), rotation=45) | ||
|
||
fig.suptitle(title, fontsize=16) | ||
|
||
pdf.savefig(fig) | ||
plt.close(fig) | ||
|
||
|
||
# Create a PdfPages object to save the figures | ||
with PdfPages(pdf_file) as pdf: | ||
title_page(plt, pdf, 'PV-Inverter 2024') | ||
|
||
title_page(plt, pdf, 'Yearly Overview', 18) | ||
|
||
plot_data(plt, pdf, combined_df, | ||
[COLUMNS['power'], COLUMNS['energytoday'], COLUMNS['energytotal']], | ||
'PV-Inverter', None, ['Power [W]', 'Energy today [Wh]', 'Energy total [Wh]'], | ||
[COLORS['power'], COLORS['energytoday'], COLORS['energytotal']], | ||
'Daily average', [None, None, None]) | ||
|
||
title_page(plt, pdf, 'Monthly Reports', 18) | ||
|
||
# Group the data by month | ||
combined_df['Month'] = combined_df.index.to_period('M') | ||
|
||
# Create a separate figure for each month | ||
for month, month_df in combined_df.groupby('Month'): | ||
title_page(plt, pdf, month, 16) | ||
|
||
plot_data(plt, pdf, month_df, | ||
[COLUMNS['power'], COLUMNS['energytoday'], COLUMNS['energytotal']], | ||
f'PV-Inverter {month}', None, ['Power [W]', 'Energy today [Wh]', 'Energy total [Wh]'], | ||
[COLORS['power'], COLORS['energytoday'], COLORS['energytotal']], | ||
'Daily average', [None, None, None]) |