-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c6c0586
commit 6efea35
Showing
4 changed files
with
242 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
< Method = RETEL_f> | ||
< MCMC runs = 1000000 > | ||
|
||
theta psrf: | ||
[1] 1.004675 1.005043 1.005131 1.004328 1.001039 1.001766 1.001821 1.003741 | ||
[9] 1.002047 1.003690 1.002943 1.002106 1.001036 1.002151 1.004675 1.000847 | ||
[17] 1.003991 1.003880 1.004994 1.001463 1.002753 1.002078 1.002623 1.002519 | ||
[25] 1.004075 1.007076 1.006724 1.002586 1.002243 1.001770 1.001479 1.001820 | ||
[33] 1.002741 1.004970 1.005725 1.001699 1.001418 1.003418 1.003746 1.001834 | ||
[41] 1.001401 1.001166 1.001079 1.000889 1.000756 1.002257 1.003136 1.005162 | ||
[49] 1.000747 1.001715 1.001792 | ||
theta mpsrf: 1.0416 | ||
beta psrf: 1.000159 1.000238 | ||
beta mpsrf: 1.000156 | ||
s2 psrf: 1.008876 | ||
Acceptance rate: 0.130911 | ||
|
||
< beta & s2 summary > | ||
beta1 mean: 0.01503831 | ||
beta1 95% ci: -0.1047506 0.1350408 | ||
beta2 mean: 0.9332734 | ||
beta2 95% ci: 0.8127158 1.053873 | ||
s2 mean: 0.9406872 | ||
s2 95% ci: 0.4964409 1.608398 | ||
|
||
< theta summary > | ||
theta 95% ci al: 3.7542 | ||
theta aad: 0.2781389 | ||
theta aard: 0.9111071 | ||
theta asd: 0.1108935 | ||
theta asrd: 3.982455 | ||
|
||
< theta_os summary > | ||
theta_os 95% ci al: 20728.25 | ||
theta_os aad: 1535.702 | ||
theta_os aard: 0.03957153 | ||
theta_os asd: 3380624 | ||
theta_os asrd: 0.002336617 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
## 1. Load packages | ||
options(warn = -1) | ||
options(scipen = 999) | ||
suppressMessages(library(actuar)) | ||
library(coda) | ||
suppressMessages(library(here)) | ||
suppressMessages(i_am("code/application/retel_f.R")) | ||
library(mvtnorm) | ||
library(retel) | ||
|
||
|
||
## 2. Load data | ||
data("income", package = "retel") | ||
raw_income <- read.csv(paste0(dirname(getwd()), "/data-raw/income.csv")) | ||
|
||
|
||
## 3. Constants | ||
# Model | ||
fit <- lm(mi_1989 ~ -1 + mi_1979 + ami, income) | ||
b0 <- coef(fit) | ||
x <- model.matrix(fit) | ||
y <- as.numeric(model.response(fit$model)) | ||
m <- nrow(x) | ||
p <- ncol(x) | ||
# MCMC parameters | ||
B <- 250000L | ||
|
||
|
||
## 4. Functions | ||
f <- function(x, par) { | ||
cbind(x - par, (x - par)^2L - 1) | ||
} | ||
# Log prior density functions | ||
log_pd_theta <- function(theta, b, s2) { | ||
dmvnorm(theta, mean = x %*% b, sigma = s2 * diag(m), log = TRUE) | ||
} | ||
log_pd_beta <- function(b, s2) { | ||
dmvnorm(b, mean = b0, sigma = 0.1 * s2 * solve(crossprod(x)), log = TRUE) | ||
} | ||
log_pd_s2 <- function(s2) { | ||
dinvgamma(s2, shape = 4, scale = 1, log = TRUE) | ||
} | ||
log_pd <- function(theta, b, s2) { | ||
log_pd_theta(theta, b, s2) + log_pd_beta(b, s2) - log(s2) | ||
} | ||
log_posterior_unnormalized <- function(theta, b, s2) { | ||
g <- f(y, theta) | ||
log_pd(theta, b, s2) + | ||
retel(f, y, theta, colMeans(g), var(g), log(m)) | ||
} | ||
# MCMC | ||
mcmc_fn <- function(B) { | ||
theta_sample <- matrix(nrow = B, ncol = m) | ||
theta_sample[1L, ] <- rnorm(m, mean = mean(y), sd = 0.1) | ||
beta_sample <- matrix(nrow = B, ncol = p) | ||
beta_sample[1L, ] <- rnorm(p, mean = b0, sd = 0.1) | ||
s2_sample <- vector("numeric", length = B) | ||
s2_sample[1L] <- rinvgamma(1L, shape = 4, scale = 1) | ||
acceptace <- vector("logical", length = B) | ||
acceptace[1L] <- FALSE | ||
for (i in seq_len(B)[-1]) { | ||
# Sample proposal value | ||
s2_p <- rnorm(1L, mean = s2_sample[i - 1L], sd = 0.06) | ||
if (s2_p < 0) { | ||
s2_p <- 0 | ||
} | ||
b_p <- rmvnorm(1L, | ||
mean = beta_sample[i - 1L, ], sigma = 0.01 * diag(p) | ||
) |> | ||
as.vector() | ||
theta_p <- rmvnorm(1L, | ||
mean = theta_sample[i - 1L, ], sigma = 0.06 * diag(m) | ||
) |> | ||
as.vector() | ||
# Compute log ratio of unnormailzed posterior densities | ||
logr <- log_posterior_unnormalized(theta_p, b_p, s2_p) - | ||
log_posterior_unnormalized( | ||
theta_sample[i - 1L, ], beta_sample[i - 1L, ], | ||
s2_sample[i - 1L] | ||
) | ||
# Sample uniform random variable | ||
u <- runif(1L) | ||
# Accept or reject | ||
if (isTRUE(log(u) < logr)) { | ||
theta_sample[i, ] <- theta_p | ||
beta_sample[i, ] <- b_p | ||
s2_sample[i] <- s2_p | ||
acceptace[i] <- TRUE | ||
} else { | ||
theta_sample[i, ] <- theta_sample[i - 1L, ] | ||
beta_sample[i, ] <- beta_sample[i - 1L, ] | ||
s2_sample[i] <- s2_sample[i - 1L] | ||
acceptace[i] <- FALSE | ||
} | ||
} | ||
list( | ||
theta = theta_sample, beta = beta_sample, s2 = s2_sample, rate = acceptace | ||
) | ||
} | ||
# Metrics | ||
aad <- function(y, e) { | ||
mean(abs(y - e)) | ||
} | ||
aard <- function(y, e) { | ||
mean(abs((y - e) / y)) | ||
} | ||
asd <- function(y, e) { | ||
mean((y - e)^2L) | ||
} | ||
asrd <- function(y, e) { | ||
mean(((y - e) / y)^2L) | ||
} | ||
|
||
|
||
## 5. Simulations | ||
set.seed(2536345) | ||
cat("< Method = RETEL_f>\n") | ||
cat("< MCMC runs =", 4L * B, ">\n") | ||
c1 <- mcmc_fn(B) | ||
c2 <- mcmc_fn(B) | ||
c3 <- mcmc_fn(B) | ||
c4 <- mcmc_fn(B) | ||
theta_c1 <- mcmc(c1$theta) | ||
theta_c2 <- mcmc(c2$theta) | ||
theta_c3 <- mcmc(c3$theta) | ||
theta_c4 <- mcmc(c4$theta) | ||
beta_c1 <- mcmc(c1$beta) | ||
beta_c2 <- mcmc(c2$beta) | ||
beta_c3 <- mcmc(c3$beta) | ||
beta_c4 <- mcmc(c4$beta) | ||
s2_c1 <- mcmc(c1$s2) | ||
s2_c2 <- mcmc(c2$s2) | ||
s2_c3 <- mcmc(c3$s2) | ||
s2_c4 <- mcmc(c4$s2) | ||
|
||
|
||
## 6. Results | ||
theta <- rbind(c1$theta, c2$theta, c3$theta, c4$theta) | ||
beta <- rbind(c1$beta, c2$beta, c3$beta, c4$beta) | ||
s2 <- c(c1$s2, c2$s2, c3$s2, c4$s2) | ||
accept <- c(c1$rate, c2$rate, c4$rate, c4$rate) | ||
# Potential scale reduction factors | ||
cat("\ntheta psrf:") | ||
cat("\n") | ||
gelman.diag(mcmc.list(theta_c1, theta_c2, theta_c3, theta_c4))$psrf[, 1L] | ||
cat( | ||
"theta mpsrf:", | ||
gelman.diag(mcmc.list(theta_c1, theta_c2, theta_c3, theta_c4))$mpsrf | ||
) | ||
cat( | ||
"\nbeta psrf:", | ||
gelman.diag(mcmc.list(beta_c1, beta_c2, beta_c3, beta_c4))$psrf[, 1L] | ||
) | ||
cat( | ||
"\nbeta mpsrf:", | ||
gelman.diag(mcmc.list(beta_c1, beta_c2, beta_c3, beta_c4))$mpsrf | ||
) | ||
cat( | ||
"\ns2 psrf:", | ||
gelman.diag(mcmc.list(s2_c1, s2_c2, s2_c3, s2_c4))$psrf[1L] | ||
) | ||
# Acceptance rate | ||
cat("\nAcceptance rate: ", mean(mean(c(c1$rate, c2$rate, c4$rate, c4$rate)))) | ||
cat("\n\n") | ||
# Summary of beta and s2 | ||
cat("< beta & s2 summary >\n") | ||
cat("beta1 mean: ", mean(beta[, 1L])) | ||
cat("\nbeta1 95% ci: ", quantile(beta[, 1L], c(0.025, 0.975))) | ||
cat("\nbeta2 mean: ", mean(beta[, 2L])) | ||
cat("\nbeta2 95% ci: ", quantile(beta[, 2L], c(0.025, 0.975))) | ||
cat("\ns2 mean: ", mean(s2)) | ||
cat("\ns2 95% ci: ", quantile(s2, c(0.025, 0.975))) | ||
# Summary of theta | ||
theta_median <- apply(theta, MARGIN = 2L, FUN = median) | ||
theta_ci <- t(apply(theta, MARGIN = 2L, FUN = quantile, c(0.025, 0.975))) | ||
theta_al <- mean(theta_ci[, 2L] - theta_ci[, 1L]) | ||
cat("\n\n< theta summary >\n") | ||
cat("theta 95% ci al: ", theta_al) | ||
cat("\ntheta aad: ", aad(y, theta_median)) | ||
cat("\ntheta aard: ", aard(y, theta_median)) | ||
cat("\ntheta asd: ", asd(y, theta_median)) | ||
cat("\ntheta asrd: ", asrd(y, theta_median)) | ||
# Original scale | ||
y_raw <- raw_income$mi_1989 | ||
theta_os <- t(apply(theta, | ||
MARGIN = 1L, FUN = function(x) x * sd(y_raw) + mean(y_raw) | ||
)) | ||
theta_os_median <- apply(theta_os, MARGIN = 2L, FUN = median) | ||
theta_os_ci <- t(apply(theta_os, MARGIN = 2L, FUN = quantile, c(0.025, 0.975))) | ||
theta_os_al <- mean(theta_os_ci[, 2L] - theta_os_ci[, 1L]) | ||
cat("\n\n< theta_os summary >\n") | ||
cat("theta_os 95% ci al: ", theta_os_al) | ||
cat("\ntheta_os aad: ", aad(y_raw, theta_os_median)) | ||
cat("\ntheta_os aard: ", aard(y_raw, theta_os_median)) | ||
cat("\ntheta_os asd: ", asd(y_raw, theta_os_median)) | ||
cat("\ntheta_os asrd: ", asrd(y_raw, theta_os_median)) | ||
cat("\n") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters