-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmini_novoStoic.py
326 lines (270 loc) · 11.5 KB
/
mini_novoStoic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import pandas as pd
import pulp
import pdb
import os
import json
from rdkit import Chem
# pulp_solver = pulp.solvers.CPLEX_CMD(path=None, keepFiles=0, mip=1, msg=1,
# options=['mip tolerances mipgap 0', 'mip tolerances absmipgap 0',
# 'mip tolerances integrality 0', 'simplex tolerances optimality 1E-9',
# 'simplex tolerances feasibility 1E-9',], timelimit=1200)
def count_substructures(radius,molecule):
"""Helper function for get the information of molecular signature of a
metabolite. The relaxed signature requires the number of each substructure
to construct a matrix for each molecule.
Parameters
----------
radius : int
the radius is bond-distance that defines how many neighbor atoms should
be considered in a reaction center.
molecule : Molecule
a molecule object create by RDkit (e.g. Chem.MolFromInchi(inchi_code)
or Chem.MolToSmiles(smiles_code))
Returns
-------
dict
dictionary of molecular signature for a molecule,
{smiles: molecular_signature}
"""
m = molecule
smi_count = dict()
atomList = [atom for atom in m.GetAtoms()]
for i in range(len(atomList)):
env = Chem.FindAtomEnvironmentOfRadiusN(m,radius,i)
atoms=set()
for bidx in env:
atoms.add(m.GetBondWithIdx(bidx).GetBeginAtomIdx())
atoms.add(m.GetBondWithIdx(bidx).GetEndAtomIdx())
# only one atom is in this environment, such as O in H2O
if len(atoms) == 0:
atoms = {i}
smi = Chem.MolFragmentToSmiles(m,atomsToUse=list(atoms),
bondsToUse=env,canonical=True)
if smi in smi_count:
smi_count[smi] = smi_count[smi] + 1
else:
smi_count[smi] = 1
return smi_count
def novoStoic_minFlux_relaxedRule(exchange_mets, novel_mets,project,iterations,pulp_solver,use_direction):
"""apply reaction rules generated from a more relaxed manner to search for
reaction rules that are able to fill the gap between the source and sink
metabolites.
- rePrime procedure is more similar to a morgan fingerprints
- the relaxed rule is generated from substructures without considering the
bond that connect the atoms at the edge of the substructure to the rest
of the molecules
Parameters
----------
exchange_mets : dict
overall stoichiometry of source and sink metabolites, {met: stoic,...}
This is a important input for novoStoic to run correctly because the
method requires that overall moieties are balanced.
novel_mets : list
list of novel metabolites that are not in the database (novoStoic/data/
metanetx_universal_model_kegg_metacyc_rhea_seed_reactome.json)
filtered_rules : list
list of rules that are filtered by the user (based on expert knowldedge)
to reduce the running time of the novoStoic search process
project : string
a path to store the tmp information of result from running novoStoic
iterations : int
the number of iterations of searching for alternative solutions
data_dir : type
Description of parameter `data_dir`.
Returns
-------
None
all the outputs are saved in the project folder.
"""
if not os.path.exists(project):
os.makedirs(project)
# the maximum flux of a reaction
M = 2
data_dir = './data'
# read csv files with molecular signatures and reaction rules
molecular_signature = json.load(open(
os.path.join(data_dir, 'decompose_vector_ac.json')))
molsigs = pd.DataFrame.from_dict(molecular_signature).fillna(0)
rules = pd.read_csv(
os.path.join(data_dir, "relaxed_rule_noduplic.csv"), index_col=0
)
###### sets ############
moiety_index = rules.index.tolist() # moiety sets
rules_index = rules.columns.values.tolist()
print("Number of rules used in this search:",len(rules_index))
exchange_index = exchange_mets.keys()
###### parameters ######
# T(m,r) contains atom stoichiometry for each rule
T = rules.to_dict(orient="index")
# C(m,i) contains moiety cardinality for each metabolite
C = molsigs.to_dict(orient="index")
for m in moiety_index:
C[m]["C00080"] = 0
C[m]["C00282"] = 0
# add metabolites that are not present in current database
for met in novel_mets:
# molsigs_product = pd.read_csv(
# project + "/relaxed_molsig_" + met + "_1.csv", index_col=0
# )
# molsigs_product_dict = molsigs_product.to_dict(orient="index")
smiles = novel_mets[met]
mol = Chem.MolFromSmiles(smiles)
mol = Chem.RemoveHs(mol)
molsigs_product_dict = count_substructures(1,mol)
for m in moiety_index:
if m in molsigs_product_dict.keys():
C[m][met] = molsigs_product_dict[m]
else:
C[m][met] = 0
###### variables ######
v_rule = pulp.LpVariable.dicts(
"v_rule", rules_index, lowBound=-M, upBound=M, cat="Integer"
)
v_rule_obj = pulp.LpVariable.dicts(
"v_rule_obj", rules_index, lowBound=0, upBound=M, cat="Continuous"
)
v_EX = pulp.LpVariable.dicts(
"v_EX", exchange_index, lowBound=-M, upBound=M, cat="Continuous"
)
y_rule = pulp.LpVariable.dicts(
"y", rules_index, lowBound=0, upBound=1, cat="Binary"
)
# create MILP problem
lp_prob = pulp.LpProblem("novoStoic", pulp.LpMinimize)
####### objective function ####
lp_prob += pulp.lpSum([v_rule_obj[j] for j in rules_index])
####### constraints ####
# constraint 1: moiety change balance
for m in moiety_index:
lp_prob += (
pulp.lpSum([T[m][r] * v_rule[r] for r in rules_index if T[m][r] !=0])
== pulp.lpSum([C[m][i] * v_EX[i] for i in exchange_index if C[m][i] != 0]),
"moiety_balance_" + str(moiety_index.index(m)),
)
# constraint 2: constraint for exchange reactions
for i, stoic in exchange_mets.items():
lp_prob += v_EX[i] == stoic, "exchange" + i
# constraint 3: control the number of rules
direction_df = pd.read_csv(
os.path.join(data_dir, "direction.csv"), index_col=0
)
direction_df.index = direction_df['reaction']
# direction: 0-reversible, 1-backward, 2-forward
direction = direction_df['direction'].to_dict()
if use_direction:
soln_file = os.path.join(project, "solution_use_direction.txt")
for j in rules_index:
if direction[j] == 0:
lp_prob += v_rule[j] >= y_rule[j] * -M, "cons1_%s" % j
lp_prob += v_rule[j] <= y_rule[j] * M, "cons2_%s" % j
if direction[j] == 1:
lp_prob += v_rule[j] >= y_rule[j] * -M, "cons1_%s" % j
lp_prob += v_rule[j] <= 0, "cons2_%s" % j
if direction[j] == 2:
lp_prob += v_rule[j] >= 0, "cons1_%s" % j
lp_prob += v_rule[j] <= y_rule[j] * M, "cons2_%s" % j
else:
soln_file = os.path.join(project, "solution_no_direction.txt")
for j in rules_index:
lp_prob += v_rule[j] >= y_rule[j] * -M, "cons1_%s" % j
lp_prob += v_rule[j] <= y_rule[j] * M, "cons2_%s" % j
for j in rules_index:
lp_prob += v_rule_obj[j] >= v_rule[j]
lp_prob += v_rule_obj[j] >= -v_rule[j]
# constraint 5: customized constraints
# the number of steps of the pathway
lp_prob += pulp.lpSum([v_rule_obj[j] for j in rules_index]) == 2
### solve
integer_cuts(lp_prob,pulp_solver,iterations,rules_index,y_rule,v_rule,soln_file,direction)
def integer_cuts(lp_prob,pulp_solver,iterations,rules_index,y_rule,v_rule,soln_file,direction):
"""add integer cut constraints to a mixed-integer linear programming problem
(MILP). The aim of such constraints is to find alternative solutions by
adding constraints to exclude the already explored solutions.
Reference: Optimization Methods in Metabolic Networks By Costas D. Maranas,
Ali R. Zomorrodi, Chapter 4.2.2 Finding alternative optimal integer
solutions
Returns
-------
type
Description of returned object.
"""
for sol_num in range(1, iterations + 1):
integer_cut_rules = []
# optinal output: lp file for debug
lp_prob.writeLP('./test.lp')
# if pulp_solver = "SCIP":
# status, values = pulp_solver.solve(lp_prob)
lp_prob.solve(pulp_solver)
# pulp_solver.solve(lp_prob)
print("Status:", pulp.LpStatus[lp_prob.status])
if pulp.LpStatus[lp_prob.status] != 'Optimal':
break
print('-----------rules--------------')
with open(soln_file,'a') as f:
f.write('iteration,' + str(sol_num))
f.write('\n')
for r in rules_index:
if (v_rule[r].varValue >= 0.1 or v_rule[r].varValue <=-0.1):
dG_info = ''
if (v_rule[r].varValue > 0 and direction[r] == 1) or (v_rule[r].varValue < 0 and direction[r] == 2):
# print("##### Found ####: " + str(r))
# with open(soln_file,'a') as f:
# f.write('##### Found ####: ' + str(r))
# f.write('\n')
dG_info = ' * Thermodynamically infeasible'
print("##### Found ####: " + str(r) + dG_info)
integer_cut_rules.append(r)
print(r,v_rule[r].varValue)
with open(soln_file,'a') as f:
f.write(r + ',' + str(v_rule[r].varValue) + dG_info)
f.write('\n')
length = len(integer_cut_rules) - 1
lp_prob += (
pulp.lpSum([y_rule[r] for r in integer_cut_rules]) <= length,
"integer_cut_" + str(sol_num),
)
def test_bdo():
exchange_mets = {
'C00091': -1, # Succinyl-CoA
'C00004': -4, # NADH
'C00003': 4, # NAD+
'C00010': 1, # coa
'C00001':1, # h2O
'14bdo': 1,
}
novel_mets = {
'14bdo': 'OCCCCO'
}
iterations = 50
project = './novoStoic_result'
# path_to_cplex = '/Users/linuswang/Applications/IBM/ILOG/CPLEX_Studio1261/cplex/bin/x86-64_osx/cplex'
# pulp_solver = pulp.CPLEX_CMD(path=path_to_cplex,keepFiles=0, mip=1, msg=1)
pulp_solver = pulp.CPLEX_CMD(path=None,keepFiles=0, mip=1, msg=1)
# pulp_solver = pulp.solvers.GUROBI_CMD()
# pulp_solver = pulp.solvers.GLPK_CMD()
use_direction=True
novoStoic_minFlux_relaxedRule(exchange_mets, novel_mets,project,iterations,pulp_solver,use_direction)
use_direction=False
novoStoic_minFlux_relaxedRule(exchange_mets, novel_mets,project,iterations,pulp_solver,use_direction)
def test_isovalarate():
exchange_mets = {
'C00141': -1, # 2-keto isovalarate
'C00004': -1, # NADH
'C00003': 1, # NAD+
"C14710": 1, # isobutanol C4H10O
'C00011': 1, # co2
}
novel_mets = {}
iterations = 50
project = './novoStoic_isovalarate'
# path_to_cplex = '/Users/linuswang/Applications/IBM/ILOG/CPLEX_Studio1261/cplex/bin/x86-64_osx/cplex'
# pulp_solver = pulp.CPLEX_CMD(path=path_to_cplex,keepFiles=0, mip=1, msg=1)
pulp_solver = pulp.CPLEX_CMD(path=None,keepFiles=0, mip=1, msg=1)
# pulp_solver = pulp.solvers.GUROBI_CMD()
# pulp_solver = pulp.GLPK_CMD()
# use_direction=True
# novoStoic_minFlux_relaxedRule(exchange_mets, novel_mets,project,iterations,pulp_solver,use_direction)
use_direction=False
novoStoic_minFlux_relaxedRule(exchange_mets, novel_mets,project,iterations,pulp_solver,use_direction)
if __name__ == '__main__':
test_isovalarate()