This crate provides a fast implementation of Decimal
fixed-point
arithmetics.
It is targeted at typical business applications, dealing with numbers
representing quantities, money and the like, not at scientific computations,
for which the accuracy of floating point math is - in most cases - sufficient.
- "Exact" representation of decimal numbers (no deviation as with binary floating point numbers)
- No hidden rounding errors (as inherent to floating point math)
- Very fast operations (by mapping them to integer ops)
- Range of representable decimal numbers sufficient for typical business applications
At the binary level a Decimal
number is represented as a coefficient (stored
as an i128
value) combined with a value specifying the number of fractional
decimal digits (stored as a u8
). The latter is limited to a value given by
the constant MAX_N_FRAC_DIGITS
= 18.
Work in progess, but most of the API is stable.
Add fpdec
to your Cargo.toml
:
[dependencies]
fpdec = "0.10"
A Decimal
number can be created in different ways.
The easiest method is to use the procedural macro Dec
:
# use fpdec::{Dec, Decimal};
let d = Dec!(-17.5);
assert_eq!(d.to_string(), "-17.5");
Alternatively you can convert an integer, a float or a string to a Decimal
:
# use fpdec::Decimal;
let d = Decimal::from(297_i32);
assert_eq!(d.to_string(), "297");
# use fpdec::{Decimal, DecimalError};
# use core::convert::TryFrom;
let d = Decimal::try_from(83.25_f64)?;
assert_eq!(d.to_string(), "83.25");
# Ok::<(), DecimalError>(())
# use fpdec::{Decimal, ParseDecimalError};
# use core::str::FromStr;
let d = Decimal::from_str("38.2070")?;
assert_eq!(d.to_string(), "38.2070");
# Ok::<(), ParseDecimalError>(())
The sign of a Decimal
can be inverted using the unary minus operator and a
Decimal
instance can be compared to other instances of type Decimal
or all
basic types of integers (besides u128):
# use fpdec::{Dec, Decimal};
let x = Dec!(129.24);
let y = -x;
assert_eq!(y.to_string(), "-129.24");
assert!(-129_i64 > y);
let z = -y;
assert_eq!(x, z);
let z = Dec!(0.00097);
assert!(x > z);
assert!(y <= z);
assert!(z != 7_u32);
assert!(7_u32 == Dec!(7.00));
Decimal
supports all five binary numerical operators +, -, *, /, and %, with
two Decimal
s or with a Decimal
and a basic integer (besides u128):
# use fpdec::{Dec, Decimal};
let x = Dec!(17.5);
let y = Dec!(6.40);
let z = x + y;
assert_eq!(z.to_string(), "23.90");
let z = x - y;
assert_eq!(z.to_string(), "11.10");
let z = x * y;
assert_eq!(z.to_string(), "112.000");
let z = x / y;
assert_eq!(z.to_string(), "2.734375");
let z = x % y;
assert_eq!(z.to_string(), "4.70");
# use fpdec::{Dec, Decimal};
let x = Dec!(17.5);
let y = -5_i64;
let z = x + y;
assert_eq!(z.to_string(), "12.5");
let z = x - y;
assert_eq!(z.to_string(), "22.5");
let z = y * x;
assert_eq!(z.to_string(), "-87.5");
let z = x / y;
assert_eq!(z.to_string(), "-3.5");
let z = x % y;
assert_eq!(z.to_string(), "2.5");
The results of Multiplication or Division are not exact in any case. If the
number of fractional decimal digits of the exact result would exceed
MAX_N_FRAC_DIGITS
fractional decimal digits, the result given is rounded to
fit this limit.
# use fpdec::{Dec, Decimal};
let x = Dec!(1e-10);
let y = Dec!(75e-9);
let z = x * y;
assert_eq!(z.to_string(), "0.000000000000000008");
let x = Dec!(1.);
let y = Dec!(3.);
let z = x / y;
assert_eq!(z.to_string(), "0.333333333333333333");
All these binary numeric operators panic if the result is not representable as
a Decimal
according to the constraints stated above. In addition, there are
functions implementing "checked" variants of the operators which return
Option::None
instead of panicking.
For Multiplication and Division there are also functions which return a result rounded to a given number of fractional digits:
# use fpdec::{Dec, Decimal, DivRounded, MulRounded};
let x = Dec!(17.5);
let y = Dec!(6.47);
let z: Decimal = x.mul_rounded(y, 1);
assert_eq!(z.to_string(), "113.2");
let z: Decimal = x.div_rounded(y, 3);
assert_eq!(z.to_string(), "2.705");
A Decimal
value can be converted into a float, maybe rounded to the nearest
value representable by the target type:
# use fpdec::{Dec, Decimal};
let d = Dec!(-33820900478.195);
let f = f64::from(d);
assert_eq!(f, -33820900478.19499969482421875_f64);
let f = f32::from(Dec!(0.6));
assert_eq!(f, 0.60000002384185791015625_f32);
Converting a Decimal
value to a primitive int is more intricate. It is only
supported by try_from / try_into and only giving a value of the target type,
if the given value represents an integral value fitting the range of values of
the target type.
# use fpdec::{Dec, Decimal, TryFromDecimalError};
let d = Dec!(3.7);
let res = i32::try_from(d);
assert!(res.is_err());
assert_eq!(res.unwrap_err(), TryFromDecimalError::NotAnIntValue);
let d = Decimal::MAX;
let res = i128::try_from(d);
assert_eq!(res.unwrap(), i128::MAX);
let res = i64::try_from(d);
assert!(res.is_err());
assert_eq!(res.unwrap_err(), TryFromDecimalError::ValueOutOfRange);
By default, only the feature std
is enabled.
-
std - When enabled, this will cause
fpdec
to use the standard library, so that conversion to string, formatting and printing are available. When disabled, the use of cratealloc
together with a system-specific allocator is needed to use that functionality. -
packed - When enabled, the struct
Decimal
is marked with#[repr(packed)]
.
-
num-traits - When enabled, the trait
num-traits::Num
is implemented forDecimal
. -
serde-as-str - When enabled, support for
serde
is enabled. This allowsDecimal
instances to be serialzed as strings and to be deserialized from strings viaserde
. -
rkyv - When enabled, support for
rkyv
is enabled. This allowsDecimal
instances to be zero-copy serialized and deserialized viarkyv
archives.