Skip to content

A serverless function to be used by Magda to generate metadata from a Esri API Url

License

Notifications You must be signed in to change notification settings

magda-io/magda-function-esri-url-processor

Repository files navigation

magda-function-esri-url-processor

This is Magda ESRI URL processor (a serverless function) created from this template repo

The url processor is used by dataset metadata creation tool to extract metadata from a ESRI API URL.

Requirement can be found here

Function Spec

The function source code can be found from here.

The function is defined as below:

export type UrlProcessorResult = {
    dataset: Record;
    distributions: Record[];
};

export default async function myFunction(
    input: string
): Promise<UrlProcessorResult>;

It expects an url string as input and output an UrlProcessorResult type data.

Install Project Dependencies

yarn install

Build & Run Function in Minikube

  • Deploy Magda v0.0.57-0 or later
  • Build the function
    • Run yarn build
  • Push docker image to minikube
    • Run eval $(minikube docker-env)
    • Run yarn docker-build-local
  • Deploy function to Minikube
    • Make sure namespacePrefix field in deploy/minikube-dev.yaml contains correct magda-core deploy namespace. By default, it's default and it works if you've deployed Magda to default namespace.
    • Run yarn deploy-local
  • Invoke your Function:
    • Install faas-cli
    • Run kubectl --namespace=[openfaas gateway namespace] port-forward svc/gateway 8080 to port-forward openfaas gateway
      • Here, [openfaas gateway namespace] is [magda-core namespace]-openfaas. e.g. if magda is deployed to default namespace, [openfaas gateway namespace] would be default-openfaas
    • Invoke by Run echo "" | faas-cli faas-cli invoke magda-function-esri-url-processor
    • Alternatively, you can use Postman to send a HTTP Request (HTTP method doesn't matter here) to Magda gateway /api/v0/openfaas/function/magda-function-esri-url-processor

Deploy with Magda

  • Add as Magda dependencies:
- name: magda-function-esri-url-processor
  version: "2.0.0" # or put latest version number here
  repository: "oci://ghcr.io/magda-io/charts"
  tags:
      - all
      - url-processors
      - magda-function-esri-url-processor

Since v2.0.0, we use Github Container Registry as our official Helm Chart & Docker Image release registry.

  • Run helm dep build to pull the dependency
  • Deploy Magda

Verify the function is deployed

  • Method One:
    • Access Magda Gateway: /api/v0/openfaas/system/function with your web browser
      • You might need Admin access to access this endpoint. However, you can disable the admin auth in Magda config.
  • Method Two:
    • Run kubectl --namespace=[openfaas function namespace] get functions
      • Here, [openfaas function namespace] is [magda-core namespace]-openfaas-fn. e.g. if magda is deployed to default namespace, [openfaas function namespace] would be default-openfaas-fn

If the Scale to Zero option is set for the function (it's set to true by default), you won't see function pod in openfaas function namespace until you invoke the function

CI Setup

This repo comes with script to build, test & release script to release docker image & helm chart to Magda repo. You need to setup the following Github action secrets to make it work:

  • AWS_ACCESS_KEY_ID: Magda helm chart repo S3 bucket access key
  • AWS_SECRET_ACCESS_KEY: Magda helm chart repo S3 bucket access key secret
  • DOCKER_HUB_PASSWORD: Magda docker hub bot password
  • GITHUB_ACCESS_TOKEN: Magda github bot access token

Requirements

Kubernetes: >= 1.14.0-0

Repository Name Version
oci://ghcr.io/magda-io/charts magda-common 2.1.1

Values

Key Type Default Description
defaultImage.imagePullSecret bool false
defaultImage.pullPolicy string "IfNotPresent"
defaultImage.repository string "ghcr.io/magda-io"
global.image object {}
global.openfaas object {}
global.urlProcessors.image object {}
image.name string "magda-function-esri-url-processor"
resources.limits.cpu string "100m"
resources.requests.cpu string "50m"
resources.requests.memory string "30Mi"