Use Annotate Everything to power your dataset annotation workflows with AI.
1. Promptable Instance Segmentation
- Simply write a prompt to get Instance Segmentation over a variety of classes.
 
2. Fast Inference
- Inference runs on a Serverless Function for blazing fast inference.
 
3. Export to any format
- Annotations can be exported format of your choice.
 
- Azure (Cloud Deployment)
 - Django Rest Framework ()
 - Nuclio (Serverless calls)
 - React (frontend client)
 - Vite (Package Manager)
 - Shadcn (styling)
 - Zustand (state management)
 - Docker
 
Set appropriate values on /backend/.env and /frontend/.env files then:
docker compose up --build- 
Create Virtual Environment and install dependencies
python3.10 -m venv env
 - 
Activate Virtual Environment
source env/bin/activate - 
Install Dependencies
pip install -r backend/requirements.txt
 - 
Add Environment variables in
backend/.envDJANGO_SECRET_KEY="your-secret-key" POSTGRES_DB=db_dev POSTGRES_USER=root POSTGRES_PASSWORD=root DJANGO_SUPERUSER_USERNAME=admin DJANGO_SUPERUSER_PASSWORD=admin DJANGO_SUPERUSER_EMAIL=admin@admin.com DJANGO_DEBUG=True DEVELOPMENT_MODE=True - 
Add Environment variables in
frontend/.envVITE_API_URL="<BACKEND_URL>:<PORT>" 
- 
Start PostgreSQL database
docker run --name db_dev -e POSTGRES_PASSWORD=root -e POSTGRES_USER=root -e POSTGRES_DB=db_dev -d -p 5432:5432 postgres
 
- 
Make Migrations
cd backend python manage.py makemigrations python manage.py migrate - 
Start Django Server
python manage.py runserver 
- 
Install dependencies
npm install - 
Start React App
npm run dev 
- Application should be running on localhost:5173 by default
 - Backend server should be running on localhost:8000 by default