Skip to content

mGalarnyk/DSGO_IntroductionScikitLearn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction to Scikit-Learn

This talk (video here) was for a Data Science Go (DSGO) Virtual Workshop on October 25, 2020.

Agenda

Topic Resources
1 Introduction Introduction.pdf
2 Setup python (Anaconda or Colab) Setup
3 How to format data for scikit-learn>Setup FormatDataForMachineLearning.ipynb
4 Linear regression using scikit-learn LinearRegression.ipynb
5 Train test split TrainTestSplit.ipynb, BostonSplit.ipynb
6 Decision trees for classification DecisionTreesClassification.ipynb
7 Decision trees for regression DecisionTreesRegression.ipynb
8 Visualize decision trees using Python DecisionTreesVisualization.ipynb
9 Bagged trees using Python BaggedTrees.ipynb
10 Random Forests using Python RandomForests.ipynb
11 Logistic Regression using Python LogisticRegression.ipynb, LogisticOneVsAll.ipynb
12 Conclusion Conclusion.pdf
13 Bonus Content (not in presentation) How to Speed Up Scikit-Learn Model Training

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published