Skip to content

A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

License

Notifications You must be signed in to change notification settings

m-ali-awan/TADDY_pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TADDY: Anomaly detection in dynamic graphs via transformer

This repo covers an reference implementation for the paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

framework

Some codes are borrowed from Graph-Bert and NetWalk.

Requirments

  • Python==3.8
  • PyTorch==1.7.1
  • Transformers==3.5.1
  • Scipy==1.5.2
  • Numpy==1.19.2
  • Networkx==2.5
  • Scikit-learn==0.23.2

Usage

Step 0: Prepare Data

python 0_prepare_data.py --dataset uci

Step 1: Train Model

python 1_train.py --dataset uci --anomaly_per 0.1

Cite

If this code is helpful, please cite the original paper:

@ARTICLE{liu2021anomaly,
  author={Liu, Yixin and Pan, Shirui and Wang, Yu Guang and Xiong, Fei and Wang, Liang and Chen, Qingfeng and Lee, Vincent CS},
  journal={IEEE Transactions on Knowledge and Data Engineering}, 
  title={Anomaly Detection in Dynamic Graphs via Transformer}, 
  year={2021},
  doi={10.1109/TKDE.2021.3124061}}

Don't forget to press a "star" after using!

About

A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%