Skip to content

lvikstrom/cloudml-hypertune

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Metric Reporting Python Package for CloudML Hypertune

Helper Functions for CloudML Engine Hypertune Services.

pypi versions

Prerequisites

Installation

Install via pip:

pip install cloudml-hypertune

Usage

import hypertune

hpt = hypertune.HyperTune()
hpt.report_hyperparameter_tuning_metric(
    hyperparameter_metric_tag='my_metric_tag',
    metric_value=0.987,
    global_step=1000)

By default, the metric entries will be stored to /tmp/hypertune/outout.metric in json format:

{"global_step": "1000", "my_metric_tag": "0.987", "timestamp": 1525851440.123456, "trial": "0"}

Licensing

  • Apache 2.0

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%