Production-ready API service for document layout analysis, OCR, and semantic chunking.
Convert PDFs, PPTs, Word docs & images into RAG/LLM-ready chunks.
Layout Analysis | OCR + Bounding Boxes | Structured HTML and markdown | VLM Processing controls
- Table of Contents
- (Super) Quick Start
- Documentation
- OpenSource vs Commercial API vs Enterprise
- Quick Start with Docker Compose
- LLM Configuration
- Licensing
- Connect With Us
- Go to chunkr.ai
- Make an account and copy your API key
- Install our Python SDK:
pip install chunkr-ai
- Use the SDK to process your documents:
from chunkr_ai import Chunkr
# Initialize with your API key from chunkr.ai
chunkr = Chunkr(api_key="your_api_key")
# Upload a document (URL or local file path)
url = "https://chunkr-web.s3.us-east-1.amazonaws.com/landing_page/input/science.pdf"
task = chunkr.upload(url)
# Export results in various formats
html = task.html(output_file="output.html")
markdown = task.markdown(output_file="output.md")
content = task.content(output_file="output.txt")
task.json(output_file="output.json")
# Clean up
chunkr.close()
Visit our docs for more information and examples.
Feature | Open Source | Commercial API | Enterprise |
---|---|---|---|
Perfect for | Development & testing | Production applications | Large-scale/High security deployments |
Layout Analysis | Basic models | Advanced models | Advanced + custom-tuned |
OCR Accuracy | Standard models | Premium models | Premium + domain-tuned |
VLM Processing | Basic vision models | Enhanced VLM models | Enhanced + custom fine-tunes |
Excel Support | ❌ | ✅ Native parser | ✅ Native parser |
Document Types | PDF, PPT, Word, Images | PDF, PPT, Word, Images, Excel | PDF, PPT, Word, Images, Excel |
Infrastructure | Self-hosted | Fully managed | Fully managed (On-prem or Chunkr-hosted) |
Support | Discord community | Priority email + community | 24/7 dedicated founing team support |
Migration Support | Community resources | Documentation + email | Dedicated migration team |
-
Prerequisites:
- Docker and Docker Compose
- NVIDIA Container Toolkit (for GPU support, optional)
-
Clone the repo:
git clone https://github.com/lumina-ai-inc/chunkr
cd chunkr
- Set up environment variables:
# Copy the example environment file
cp .env.example .env
# Configure your llm models
cp models.example.yaml models.yaml
For more information on how to set up LLMs, see here.
- Start the services:
# For GPU deployment:
docker compose up -d
# For CPU-only deployment:
docker compose -f compose.yaml -f compose.cpu.yaml up -d
# For Mac ARM architecture (M1, M2, M3, etc.):
docker compose -f compose.yaml -f compose.cpu.yaml -f compose.mac.yaml up -d
-
Access the services:
- Web UI:
http://localhost:5173
- API:
http://localhost:8000
- Web UI:
-
Stop the services when done:
# For GPU deployment:
docker compose down
# For CPU-only deployment:
docker compose -f compose.yaml -f compose.cpu.yaml down
# For Mac ARM architecture (M1, M2, M3, etc.):
docker compose -f compose.yaml -f compose.cpu.yaml -f compose.mac.yaml down
Chunkr supports two ways to configure LLMs:
- models.yaml file: Advanced configuration for multiple LLMs with additional options
- Environment variables: Simple configuration for a single LLM
For more flexible configuration with multiple models, default/fallback options, and rate limits:
- Copy the example file to create your configuration:
cp models.example.yaml models.yaml
- Edit the models.yaml file with your configuration. Example:
models:
- id: gpt-4o
model: gpt-4o
provider_url: https://api.openai.com/v1/chat/completions
api_key: "your_openai_api_key_here"
default: true
rate-limit: 200 # requests per minute - optional
Benefits of using models.yaml:
- Configure multiple LLM providers simultaneously
- Set default and fallback models
- Add distributed rate limits per model
- Reference models by ID in API requests (see docs for more info)
Read the
models.example.yaml
file for more information on the available options.
You can use any OpenAI API compatible endpoint by setting the following variables in your .env file:
LLM__KEY:
LLM__MODEL:
LLM__URL:
Below is a table of common LLM providers and their configuration details to get you started:
Provider | API URL | Documentation |
---|---|---|
OpenAI | https://api.openai.com/v1/chat/completions | OpenAI Docs |
Google AI Studio | https://generativelanguage.googleapis.com/v1beta/openai/chat/completions | Google AI Docs |
OpenRouter | https://openrouter.ai/api/v1/chat/completions | OpenRouter Models |
Self-Hosted | http://localhost:8000/v1 | VLLM or Ollama |
The core of this project is dual-licensed:
- GNU Affero General Public License v3.0 (AGPL-3.0)
- Commercial License
To use Chunkr without complying with the AGPL-3.0 license terms you can contact us or visit our website.
- 📧 Email: mehul@chunkr.ai
- 📅 Schedule a call: Book a 30-minute meeting
- 🌐 Visit our website: chunkr.ai