forked from graphdeeplearning/benchmarking-gnns
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* README include updates and learderboard Co-authored-by: Xavier Bresson <xavier.bresson@gmail.com>
- Loading branch information
1 parent
cd976c2
commit 762c227
Showing
3 changed files
with
257 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
# Leaderboards | ||
|
||
The leaderboard includes the best performing GNN models on each datasets, _in order_, with their scores and the number of trainable parameters. The **small** parameter models have 100k trainable parameters and the **large** parameter models have 500k trainable parameters. | ||
|
||
## 1. PATTERN - Node Classification | ||
|
||
**Models with small configs, _i.e._ 100k trainable parameters** | ||
|
||
|Rank|Model | #Params | Test Acc ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1| RingGNN | 105206 | 86.245 ± 0.013 | [Link](https://papers.nips.cc/paper/9718-on-the-equivalence-between-graph-isomorphism-testing-and-function-approximation-with-gnns) | | ||
|2| 3WLGNN | 103572 | 85.661 ± 0.353 | [Link](https://arxiv.org/abs/1905.11136) | | ||
|3| GIN | 100884 | 85.590 ± 0.011 | [Link](https://arxiv.org/abs/1810.00826)| | ||
|4| MoNet | 103775 | 85.482 ± 0.037 | [Link](https://arxiv.org/abs/1611.08402) | | ||
|5| GatedGCN | 104003 | 84.480 ± 0.122 | [Link](https://arxiv.org/abs/1711.07553) | | ||
|6| GAT | 109936 | 75.824 ± 1.823 | [Link](https://arxiv.org/abs/1710.10903) | | ||
|7| GCN | 100923 | 63.880 ± 0.074 | [Link](https://arxiv.org/abs/1609.02907) | | ||
|8| GraphSage | 101739 | 50.516 ± 0.001 | [Link](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf) | | ||
|
||
**Models with large configs, _i.e._ 500k trainable parameters** | ||
|
||
|Rank|Model | #Params | Test Acc ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|GatedGCN-PE | 505421 | 86.363 ± 0.127| [Link](https://arxiv.org/abs/2003.00982) | | ||
|2|RingGNN | 504766 | 86.244 ± 0.025 |[Link](https://papers.nips.cc/paper/9718-on-the-equivalence-between-graph-isomorphism-testing-and-function-approximation-with-gnns) | | ||
|3|MoNet | 511487 | 85.582 ± 0.038 | [Link](https://arxiv.org/abs/1611.08402) | | ||
|4|GatedGCN | 502223 | 85.568 ± 0.088 | [Link](https://arxiv.org/abs/1711.07553) | | ||
|5|GIN | 508574 | 85.387 ± 0.136 | [Link](https://arxiv.org/abs/1810.00826)| | ||
|6|3WLGNN | 502872 | 85.341 ± 0.207 | [Link](https://arxiv.org/abs/1905.11136) | | ||
|7|GAT | 526990 | 78.271 ± 0.186 | [Link](https://arxiv.org/abs/1710.10903) | | ||
|8|GCN | 500823 | 71.892 ± 0.334 | [Link](https://arxiv.org/abs/1609.02907) | | ||
|9|GraphSage | 502842 | 50.492 ± 0.001 | [Link](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf) | | ||
|
||
<br> | ||
|
||
## 2. CLUSTER - Node Classification | ||
|
||
**Models with small configs, _i.e._ 100k trainable parameters** | ||
|
||
|Rank|Model | #Params | Test Acc ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|GatedGCN|104355|60.404 ± 0.419|[Link](https://bit.ly/gatedgcn-paper) | | ||
|2|GIN|103544|58.384 ± 0.236|[Link](https://bit.ly/gin-paper) | | ||
|3|MoNet|104227|58.064 ± 0.131| [Link](https://bit.ly/monet-paper) | | ||
|4|GAT|110700|57.732 ± 0.323|[Link](https://bit.ly/gat-paper) | | ||
|5|3WLGNN|105552|57.130 ± 6.539|[Link](https://bit.ly/3wlgnn-paper) | | ||
|6|GCN| 101655| 53.445 ± 2.029 | [Link](https://bit.ly/gcn-paper) | | ||
|7|GraphSage|102187|50.454 ± 0.145|[Link](https://bit.ly/graphsage-paper) | | ||
|8|RingGNN|104746|42.418 ± 20.063|[Link](https://bit.ly/ring-gnn-paper) | | ||
|
||
|
||
**Models with large configs, _i.e._ 500k trainable parameters** | ||
|
||
|
||
|Rank|Model | #Params | Test Acc ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|GatedGCN-PE|503473|74.088 ± 0.344|[Link](https://bit.ly/gatedgcn-pe-paper) | | ||
|2|GatedGCN|502615|73.840 ± 0.326|[Link](https://bit.ly/gatedgcn-paper) | | ||
|3|GAT|527874|70.587 ± 0.447|[Link](https://bit.ly/gat-paper) | | ||
|4|GCN|501687|68.498 ± 0.976|[Link](https://bit.ly/gcn-paper) | | ||
|5|MoNet|511999|66.407 ± 0.540|[Link](https://bit.ly/monet-paper) | | ||
|6|GIN|517570|64.716 ± 1.553|[Link](https://bit.ly/gin-paper) | | ||
|7|GraphSage|503350|63.844 ± 0.110|[Link](https://bit.ly/graphsage-paper) | | ||
|8|3WLGNN|507252|55.489 ± 7.863|[Link](https://bit.ly/3wlgnn-paper) | | ||
|9|RingGNN|524202|22.340 ± 0.000|[Link](https://bit.ly/ring-gnn-paper) | | ||
|
||
|
||
|
||
<br> | ||
|
||
## 3. ZINC - Graph Regression | ||
|
||
**Models with small configs, _i.e._ 100k trainable parameters** | ||
|
||
|Rank|Model | #Params | Test MAE ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|3WLGNN-E|103098| 0.256 ± 0.054|[Link](https://bit.ly/3wlgnn-paper) | | ||
|2|RingGNN-E|104403 |0.363 ± 0.026|[Link](https://bit.ly/ring-gnn-paper) | | ||
|3|GatedGCN-E|105875|0.375 ± 0.003|[Link](https://bit.ly/gatedgcn-pe-paper) | | ||
|4|GIN|103079| 0.387 ± 0.015|[Link](https://bit.ly/gin-paper) | | ||
|5|MoNet|106002|0.397 ± 0.010|[Link](https://bit.ly/monet-paper) | | ||
|6|3WLGNN|102150 |0.407 ± 0.028|[Link](https://bit.ly/3wlgnn-paper) | | ||
|7|GatedGCN|105735|0.435 ± 0.011|[Link](https://bit.ly/gatedgcn-paper) | | ||
|8|GCN|103077| 0.459 ± 0.006|[Link](https://bit.ly/gcn-paper) | | ||
|9|GraphSage|94977|0.468 ± 0.003|[Link](https://bit.ly/graphsage-paper) | | ||
|10|GAT|102385|0.475 ± 0.007|[Link](https://bit.ly/gat-paper) | | ||
|11|RingGNN|97978 |0.512 ± 0.023|[Link](https://bit.ly/ring-gnn-paper) | | ||
|
||
|
||
**Models with large configs, _i.e._ 500k trainable parameters** | ||
|
||
|
||
|Rank|Model | #Params | Test MAE ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|GatedGCN-PE|505011 |0.214 ± 0.006|[Link](https://bit.ly/gatedgcn-pe-paper) | | ||
|2|GatedGCN-E|504309| 0.282 ± 0.015|[Link](https://bit.ly/gatedgcn-pe-paper) | | ||
|3|MoNet|504013 |0.292 ± 0.006|[Link](https://bit.ly/monet-paper) | | ||
|4|3WLGNN-E|507603|0.303 ± 0.068|[Link](https://bit.ly/3wlgnn-paper) | | ||
|5|RingGNN-E|527283| 0.353 ± 0.019|[Link](https://bit.ly/ring-gnn-paper) | | ||
|6|GCN|505079| 0.367 ± 0.011|[Link](https://bit.ly/gcn-paper) | | ||
|7|GAT|531345|0.384 ± 0.007|[Link](https://bit.ly/gat-paper) | | ||
|8|GraphSage|505341 |0.398 ± 0.002|[Link](https://bit.ly/graphsage-paper) | | ||
|9|GIN|509549| 0.526 ± 0.051|[Link](https://bit.ly/gin-paper) | | ||
|
||
|
||
|
||
<br> | ||
|
||
## 4. MNIST - Graph Classification | ||
|
||
**Models with small configs, _i.e._ 100k trainable parameters** | ||
|
||
|Rank|Model | #Params | Test Acc ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|GatedGCN|104217 |97.340 ± 0.143|[Link](https://bit.ly/gatedgcn-paper) | | ||
|2|GraphSage|104337 |97.312 ± 0.097|[Link](https://bit.ly/graphsage-paper) | | ||
|3|GIN|105434 |96.485 ± 0.252|[Link](https://bit.ly/gin-paper) | | ||
|4|GAT|110400| 95.535 ± 0.205|[Link](https://bit.ly/gat-paper) | | ||
|5|3WLGNN|108024 |95.075 ± 0.961|[Link](https://bit.ly/3wlgnn-paper) | | ||
|6|MoNet|104049 |90.805 ± 0.032|[Link](https://bit.ly/monet-paper) | | ||
|7|GCN|101365 |90.705 ± 0.218|[Link](https://bit.ly/gcn-paper) | | ||
|8|RingGNN|105398| 11.350 ± 0.000|[Link](https://bit.ly/ring-gnn-paper) | | ||
|
||
|
||
**Models with large configs, _i.e._ 500k trainable parameters for 3WLGNN and RingGNN** | ||
|
||
|
||
|Rank|Model | #Params | Test Acc ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|3WLGNN|501690|95.002 ± 0.419|[Link](https://bit.ly/3wlgnn-paper) | | ||
|2|RingGNN|505182| 91.860 ± 0.449|[Link](https://bit.ly/ring-gnn-paper) | | ||
|
||
|
||
|
||
<br> | ||
|
||
## 5. CIFAR10 - Graph Classification | ||
|
||
**Models with small configs, _i.e._ 100k trainable parameters** | ||
|
||
|Rank|Model | #Params | Test Acc ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|GatedGCN|104357|67.312 ± 0.311|[Link](https://bit.ly/gatedgcn-paper) | | ||
|2|GraphSage|104517|65.767 ± 0.308|[Link](https://bit.ly/graphsage-paper) | | ||
|3|GAT|110704|64.223 ± 0.455|[Link](https://bit.ly/gat-paper) | | ||
|4|3WLGNN|108516|59.175 ± 1.593|[Link](https://bit.ly/3wlgnn-paper) | | ||
|5|GCN|101657|55.710 ± 0.381|[Link](https://bit.ly/gcn-paper) | | ||
|6|GIN|105654|55.255 ± 1.527|[Link](https://bit.ly/gin-paper) | | ||
|7|MoNet|104229|54.655 ± 0.518|[Link](https://bit.ly/monet-paper) | | ||
|8|RingGNN|105165|19.300 ± 16.108|[Link](https://bit.ly/ring-gnn-paper) | | ||
|
||
|
||
**Models with large configs, _i.e._ 500k trainable parameters for 3WLGNN and RingGNN** | ||
|
||
|
||
|Rank|Model | #Params | Test Acc ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|3WLGNN|502770|58.043 ± 2.512|[Link](https://bit.ly/3wlgnn-paper) | | ||
|2|RingGNN|504949| 39.165 ± 17.114|[Link](https://bit.ly/ring-gnn-paper) | | ||
|
||
|
||
|
||
<br> | ||
|
||
## 6. TSP - Edge Classification/Link Prediction | ||
|
||
**Models with small configs, _i.e._ 100k trainable parameters** | ||
|
||
|Rank|Model | #Params | Test F1 ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|GatedGCN-E|97858 |0.808 ± 0.003|[Link](https://bit.ly/gatedgcn-pe-paper) | | ||
|2|GatedGCN|97858 |0.791 ± 0.003|[Link](https://bit.ly/gatedgcn-paper) | | ||
|3|3WLGNN-E|106366 |0.694 ± 0.073|[Link](https://bit.ly/3wlgnn-paper) | | ||
|4|k-NN baseline|NA(k=2)|0.693 ± 0.000|[Link](https://bit.ly/gatedgcn-pe-paper) | | ||
|5|GAT|96182| 0.671 ± 0.002|[Link](https://bit.ly/gat-paper) | | ||
|6|GraphSage|99263 |0.665 ± 0.003|[Link](https://bit.ly/graphsage-paper) | | ||
|7|GIN|99002 |0.656 ± 0.003|[Link](https://bit.ly/gin-paper) | | ||
|8|RingGNN-E|106862 |0.643 ± 0.024|[Link](https://bit.ly/ring-gnn-paper) | | ||
|9|MoNet|99007| 0.641 ± 0.002|[Link](https://bit.ly/monet-paper) | | ||
|10|GCN|95702 |0.630 ± 0.001|[Link](https://bit.ly/gcn-paper) | | ||
|
||
|
||
**Models with large configs, _i.e._ 500k trainable parameters** | ||
|
||
|
||
|Rank|Model | #Params | Test F1 ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|GatedGCN-E|500770 |0.838 ± 0.002|[Link](https://bit.ly/gatedgcn-pe-paper) | | ||
|2|RingGNN-E|507938| 0.704 ± 0.003|[Link](https://bit.ly/ring-gnn-paper) | | ||
|3|k-NN baseline|NA(k=2)|0.693 ± 0.000|[Link](https://bit.ly/gatedgcn-pe-paper) | | ||
|4|3WLGNN-E|506681|0.288 ± 0.311|[Link](https://bit.ly/3wlgnn-paper) | | ||
|
||
|
||
|
||
<br> | ||
|
||
## 7. OGBL-COLLAB - Edge Classification/Link Prediction | ||
|
||
**Models with configs having 40k trainable parameters** | ||
|
||
|Rank|Model | #Params | Test Hits@50 ± s.d. | Paper | | ||
|----| ---------- |------------:| :--------:|:-------:| | ||
|1|GatedGCN|40965|52.816 ± 1.303|[Link](https://bit.ly/gatedgcn-paper) | | ||
|2|GatedGCN-PE|42769|52.018 ± 1.178|[Link](https://bit.ly/gatedgcn-pe-paper) | | ||
|3|GraphSage|39856|51.618 ± 0.690|[Link](https://bit.ly/graphsage-paper) | | ||
|4|GAT|42637|51.501 ± 0.962|[Link](https://bit.ly/gat-paper) | | ||
|5|GCN|40479|50.422 ± 1.131|[Link](https://bit.ly/gcn-paper) | | ||
|6|GatedGCN-E|40965|49.212 ± 1.560|[Link](https://bit.ly/gatedgcn-pe-paper) | | ||
|7|MatrixFact baseline|-|44.206 ± 0.452|[Link](https://arxiv.org/abs/2005.00687)| | ||
|8|GIN|39544|41.730 ± 2.284|[Link](https://bit.ly/gin-paper) | | ||
|9|MoNet|39751|36.144 ± 2.191|[Link](https://bit.ly/monet-paper) | | ||
|
||
|
||
|
||
**Note for OGBL-COLLAB** | ||
- 40k params is the highest we could fit the single OGBL-COLLAB graph on GPU for fair comparisons. | ||
- RingGNN and 3WLGNN rely on dense tensors which leads to OOM on both GPU and CPU memory. | ||
|
||
|
||
|
||
|
||
|
||
<br><br><br> |