Skip to content

Commit

Permalink
first commit, without sliding window
Browse files Browse the repository at this point in the history
  • Loading branch information
lucidrains committed May 20, 2021
1 parent ae1deea commit 7bc3c7f
Show file tree
Hide file tree
Showing 4 changed files with 334 additions and 0 deletions.
1 change: 1 addition & 0 deletions g_mlp_gpt/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from g_mlp_gpt.g_mlp_gpt import gMLPGPT
73 changes: 73 additions & 0 deletions g_mlp_gpt/autoregressive_wrapper.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
import torch
from torch import nn
import torch.nn.functional as F

# helper function

def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner

# top k filtering

def top_k(logits, thres = 0.9):
k = int((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs

class AutoregressiveWrapper(nn.Module):
def __init__(self, net, ignore_index = -100, pad_value = 0):
super().__init__()
self.pad_value = pad_value
self.ignore_index = ignore_index

self.net = net
self.max_seq_len = net.seq_len

@torch.no_grad()
@eval_decorator
def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, **kwargs):
device = start_tokens.device
num_dims = len(start_tokens.shape)

if num_dims == 1:
start_tokens = start_tokens[None, :]

b, t = start_tokens.shape

out = start_tokens

for _ in range(seq_len):
x = out[:, -self.max_seq_len:]

logits = self.net(x, **kwargs)[:, -1, :]

filtered_logits = top_k(logits, thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)

sample = torch.multinomial(probs, 1)

out = torch.cat((out, sample), dim=-1)

if eos_token is not None and (sample == eos_token).all():
break

out = out[:, t:]

if num_dims == 1:
out = out.squeeze(0)

return out

def forward(self, x, **kwargs):
xi, xo = x[:, :-1], x[:, 1:]
out = self.net(xi, **kwargs)
loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index)
return loss
151 changes: 151 additions & 0 deletions g_mlp_gpt/g_mlp_gpt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
from math import ceil
from random import randrange
import torch
import torch.nn.functional as F
from torch import nn, einsum

from einops.layers.torch import Rearrange, Reduce
from einops import rearrange

# functions

def exists(val):
return val is not None

def pad_to_multiple(tensor, multiple, dim = -1, value = 0):
seqlen = tensor.shape[dim]
m = seqlen / multiple
if m.is_integer():
return tensor
remainder = ceil(m) * multiple - seqlen
pad_offset = (0,) * (-1 - dim) * 2
return F.pad(tensor, (*pad_offset, 0, remainder), value = value)

def dropout_layers(layers, prob_survival):
if prob_survival == 1:
return layers

num_layers = len(layers)
to_drop = torch.zeros(num_layers).uniform_(0., 1.) > prob_survival

# make sure at least one layer makes it
if all(to_drop):
rand_index = randrange(num_layers)
to_drop[rand_index] = False

layers = [layer for (layer, drop) in zip(layers, to_drop) if not drop]
return layers

# helper classes

class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn

def forward(self, x):
return self.fn(x) + x

class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.fn = fn
self.norm = nn.LayerNorm(dim)

def forward(self, x, **kwargs):
x = self.norm(x)
return self.fn(x, **kwargs)

class CausalSpatialGatingUnit(nn.Module):
def __init__(
self,
dim,
dim_seq,
attn_dim = None,
init_eps = 1e-3,
heads = 4
):
super().__init__()
dim_out = dim // 2

self.norm = nn.LayerNorm(dim_out)

self.heads = heads
self.weight = nn.Parameter(torch.zeros(heads, dim_seq, dim_seq))
self.bias = nn.Parameter(torch.zeros(heads, dim_seq))

self.attn = Attention(dim, dim_out, attn_dim) if exists(attn_dim) else None

init_eps /= dim_seq
nn.init.uniform_(self.weight, -init_eps, init_eps)
nn.init.constant_(self.bias, 1.)

def forward(self, x):
device, n, h = x.device, x.shape[1], self.heads

res, gate = x.chunk(2, dim = -1)
gate = self.norm(gate)

weight, bias = self.weight, self.bias
weight, bias = weight[:, :n, :n], bias[:, :n]

mask = torch.ones(weight.shape[:2], device = device).triu_(1).bool()
weight = weight.masked_fill(mask[..., None], 0.)

gate = rearrange(gate, 'b n (h d) -> b h n d', h = h)
gate = einsum('b h n d, h n m -> b h m d', gate, weight)
gate = gate + rearrange(bias, 'h n -> () h n ()')
gate = rearrange(gate, 'b h n d -> b n (h d)')

return gate * res

def gMLPBlock(
*,
dim,
dim_ff,
seq_len,
attn_dim = None,
heads = 4,
causal = False
):
return nn.Sequential(
nn.Linear(dim, dim_ff),
nn.GELU(),
CausalSpatialGatingUnit(dim_ff, seq_len, attn_dim, causal, heads = heads),
nn.Linear(dim_ff // 2, dim)
)

# main classes

class gMLPGPT(nn.Module):
def __init__(
self,
*,
num_tokens = None,
dim,
depth,
seq_len,
heads = 2,
ff_mult = 4,
attn_dim = None,
prob_survival = 1.,
):
super().__init__()
dim_ff = dim * ff_mult
self.seq_len = seq_len
self.prob_survival = prob_survival

self.to_embed = nn.Embedding(num_tokens, dim) if exists(num_tokens) else nn.Identity()

self.layers = nn.ModuleList([Residual(PreNorm(dim, gMLPBlock(dim = dim, dim_ff = dim_ff, seq_len = seq_len, heads = heads, attn_dim = attn_dim))) for i in range(depth)])

self.to_logits = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_tokens)
) if exists(num_tokens) else nn.Identity()

def forward(self, x):
x = self.to_embed(x)
layers = self.layers if not self.training else dropout_layers(self.layers, self.prob_survival)
out = nn.Sequential(*layers)(x)
return self.to_logits(out)
109 changes: 109 additions & 0 deletions train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
from g_mlp_pytorch import gMLPGPT
from g_mlp_pytorch.autoregressive_wrapper import AutoregressiveWrapper

import random
import tqdm
import gzip
import numpy as np
import torch
import torch.optim as optim
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset

# constants

NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 768
SEQ_LEN = 768

# helpers

def cycle(loader):
while True:
for data in loader:
yield data

def decode_token(token):
return str(chr(max(32, token)))

def decode_tokens(tokens):
return ''.join(list(map(decode_token, tokens)))

# instantiate GPT-like decoder model

model = gMLPGPT(
num_tokens = 256,
dim = 512,
seq_len = SEQ_LEN,
depth = 8,
heads = 4,
causal = True
)

model = AutoregressiveWrapper(model)
model.cuda()

# prepare enwik8 data

with gzip.open('./data/enwik8.gz') as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
trX, vaX = np.split(X, [int(90e6)])
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX)

class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len

def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,))
full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long()
return full_seq.cuda()

def __len__(self):
return self.data.size(0) // self.seq_len

train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE))
val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE))

# optimizer

optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)

# training

for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'):
model.train()

for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
loss.backward()

print(f'training loss: {loss.item()}')
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()

if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
loss = model(next(val_loader))
print(f'validation loss: {loss.item()}')

if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset)[:-1]
prime = decode_tokens(inp)
print(f'%s \n\n %s', (prime, '*' * 100))

sample = model.generate(inp, GENERATE_LENGTH)
output_str = decode_tokens(sample)
print(output_str)

0 comments on commit 7bc3c7f

Please sign in to comment.