Skip to content

lrisguan/LLM

Repository files navigation

LLM

Implement a LLM step by step with PyTorch from basic torch utilize to a LLM with MoE. Code can run on CPU, GPU, NPU(Ascend).

Important

To have a better reading experience. You'd better change the Monospaced fonts to the one you like, such as Consolas and Cascadia Code etc. Or when you reading the notebook, the code is very ugly maybe.

Note

this repository is under coding. Cause I'm a student, the developing process may be slow.

Direcroty SubSection Status
basic_pytorch tensor
basic_pytorch data
basic_pytorch activation_func
basic_pytorch nn
basic_pytorch autograd
optimizer Gradientprop
optimizer SGD
optimizer RMSprop
optimizer Adam
optimizer AdamW
optmizer Muon
tokenizer \
embedding \
transformer \
llm GPT
llm Llama
llm Qwen
llm DeepSeek
llm ChatGLM
llm Kimi
train \
train DeepSpeed
infer LLaMA.cpp
infer Ollama
infer SGLang
Multimodal \
MoE \
Finetuning Classification
Finetuning Instruction
Finetuning LoRA
Finetuning QLoRA
Finetuning LLaMA-Factory
Finetuning LLaMA-Adapter
Finetuning RLHF
Distill \
quantization \
compression \
deployment Fastapi
deployment onnx-runtime
deployment TensorRT
deployment vllm
corpus \