Skip to content

Commit

Permalink
Update formatting of Applications page (keras-team#821)
Browse files Browse the repository at this point in the history
  • Loading branch information
leSamo authored Mar 10, 2022
1 parent 7e6b948 commit a9959fd
Showing 1 changed file with 20 additions and 19 deletions.
39 changes: 20 additions & 19 deletions templates/api/applications/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,30 +40,31 @@ then any model loaded from this repository will get built according to the Tenso
| [EfficientNetB5](efficientnet/#efficientnetb5-function) | 118 | 83.6% | 96.7% | 30.6M | 312 | 579.2 | 25.3 |
| [EfficientNetB6](efficientnet/#efficientnetb6-function) | 166 | 84.0% | 96.8% | 43.3M | 360 | 958.1 | 40.4 |
| [EfficientNetB7](efficientnet/#efficientnetb7-function) | 256 | 84.3% | 97.0% | 66.7M | 438 | 1578.9 | 61.6 |
| [EfficientNetV2B0](efficientnet_v2/#efficientnetv2b0-function) | 29 | 0.787 | 0.943 | 7,200,312 | - | - | - |
| [EfficientNetV2B1](efficientnet_v2/#efficientnetv2b1-function) | 34 | 0.798 | 0.950 | 8,212,124 | - | - | - |
| [EfficientNetV2B2](efficientnet_v2/#efficientnetv2b2-function) | 42 | 0.805 | 0.951 | 10,178,374 | - | - | - |
| [EfficientNetV2B3](efficientnet_v2/#efficientnetv2b3-function) | 59 | 0.820 | 0.958 | 14,467,622 | - | - | - |
| [EfficientNetV2S](efficientnet_v2/#efficientnetv2s-function) | 88 | 0.839 | 0.967 | 21,612,360 | - | - | - |
| [EfficientNetV2M](efficientnet_v2/#efficientnetv2m-function) | 220 | 0.853 | 0.974 | 54,431,388 | - | - | - |
| [EfficientNetV2L](efficientnet_v2/#efficientnetv2l-function) | 479 | 0.857 | 0.975 | 119,027,848 | - | - | - |
| [EfficientNetV2B0](efficientnet_v2/#efficientnetv2b0-function) | 29 | 0.787 | 0.943 | 7,200,312 | - | - | - |
| [EfficientNetV2B1](efficientnet_v2/#efficientnetv2b1-function) | 34 | 0.798 | 0.950 | 8,212,124 | - | - | - |
| [EfficientNetV2B2](efficientnet_v2/#efficientnetv2b2-function) | 42 | 0.805 | 0.951 | 10,178,374 | - | - | - |
| [EfficientNetV2B3](efficientnet_v2/#efficientnetv2b3-function) | 59 | 0.820 | 0.958 | 14,467,622 | - | - | - |
| [EfficientNetV2S](efficientnet_v2/#efficientnetv2s-function) | 88 | 0.839 | 0.967 | 21,612,360 | - | - | - |
| [EfficientNetV2M](efficientnet_v2/#efficientnetv2m-function) | 220 | 0.853 | 0.974 | 54,431,388 | - | - | - |
| [EfficientNetV2L](efficientnet_v2/#efficientnetv2l-function) | 479 | 0.857 | 0.975 | 119,027,848 | - | - | - |
<br>
| [EfficientNetV2B0](efficientnet_v2/#efficientnetv2b0-function) | 29 | 78.7% | 94.3% | 7.2M | - | - | - |
| [EfficientNetV2B1](efficientnet_v2/#efficientnetv2b1-function) | 34 | 79.8% | 95.0% | 8.2M | - | - | - |
| [EfficientNetV2B2](efficientnet_v2/#efficientnetv2b2-function) | 42 | 80.5% | 95.1% | 10.2M | - | - | - |
| [EfficientNetV2B3](efficientnet_v2/#efficientnetv2b3-function) | 59 | 82.0% | 95.8% | 14.5M | - | - | - |
| [EfficientNetV2S](efficientnet_v2/#efficientnetv2s-function) | 88 | 83.9% | 96.7% | 21.6M | - | - | - |
| [EfficientNetV2M](efficientnet_v2/#efficientnetv2m-function) | 220 | 85.3% | 97.4% | 54.4M | - | - | - |
| [EfficientNetV2L](efficientnet_v2/#efficientnetv2l-function) | 479 | 85.7% | 97.5% | 119.0M | - | - | - |
| [EfficientNetV2B0](efficientnet_v2/#efficientnetv2b0-function) | 29 | 78.7% | 94.3% | 7.2M | - | - | - |
| [EfficientNetV2B1](efficientnet_v2/#efficientnetv2b1-function) | 34 | 79.8% | 95.0% | 8.2M | - | - | - |
| [EfficientNetV2B2](efficientnet_v2/#efficientnetv2b2-function) | 42 | 80.5% | 95.1% | 10.2M | - | - | - |
| [EfficientNetV2B3](efficientnet_v2/#efficientnetv2b3-function) | 59 | 82.0% | 95.8% | 14.5M | - | - | - |
| [EfficientNetV2S](efficientnet_v2/#efficientnetv2s-function) | 88 | 83.9% | 96.7% | 21.6M | - | - | - |
| [EfficientNetV2M](efficientnet_v2/#efficientnetv2m-function) | 220 | 85.3% | 97.4% | 54.4M | - | - | - |
| [EfficientNetV2L](efficientnet_v2/#efficientnetv2l-function) | 479 | 85.7% | 97.5% | 119.0M | - | - | - |

The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation dataset.

Depth refers to the topological depth of the network. This includes activation layers, batch normalization layers etc.

Time per inference step is the average of 30 batches and 10 repetitions.
- CPU: AMD EPYC Processor (with IBPB) (92 core)
- Ram: 1.7T
- GPU: Tesla A100
- Batch size: 32

- CPU: AMD EPYC Processor (with IBPB) (92 core)
- RAM: 1.7T
- GPU: Tesla A100
- Batch size: 32

Depth counts the number of layers with parameters.

Expand Down

0 comments on commit a9959fd

Please sign in to comment.