Official Pytorch Code base for "SMGNet:A Semantic Map-Guided Multitask Neural Network for Remote Sensing Image Semantic Change Detection"
We propose a novel multitask network (i.e., SMGNet) that fully integrates available semantic information derived from historical maps, with the aim of improving the under-detection of changed areas and misclassiffcation of changed classes derived from high-resolution satellite images.
The code is stable while using Python 3.9.0, CUDA >=11.0
- Clone this repository:
git clone https://github.com/long123524/SMGNet
cd SMGNetTo install all the dependencies using conda or pip:
PyTorch
TensorboardX
OpenCV
numpy
tqdm
skimage
...
Make sure to put the files as the following structure:
inputs
└── <train>
├── image1
| ├── 001.tif
│ ├── 002.tif
│ ├── 003.tif
│ ├── ...
|
└── image2
| ├── 001.tif
| ├── 002.tif
| ├── 003.tif
| ├── ...
└── label1
| ├── 001.tif
| ├── 002.tif
| ├── 003.tif
| ├── ...
└── label2
| ├── 001.tif
| ├── 002.tif
| ├── 003.tif
| ├── ...
└── prior_t1
| ├── 001.tif
| ├── 002.tif
| ├── 003.tif
| ├── ...
└── ...
For testing and validation datasets, the same structure as the above.
A preprocessed data of HRSCD is available at https://pan.baidu.com/s/14FQNhSr-D8i1N3zeCqg0nQ code: m9u7
- Train the model.
python train_SPG.py.
- Test the model.
python pred_SCD.py.
- Accuracy evaluation.
python Eval_SCD.py.
A pretrained weight of PVT-V2 on the ImageNet dataset is provided: https://drive.google.com/file/d/1uzeVfA4gEQ772vzLntnkqvWePSw84F6y/view?usp=sharing
This code-base uses certain code-blocks and helper functions from HGINet and BiSRNet.
If you find this work useful or interesting, please consider citing the following references.
@article{long2025,
title={SMGNet:A Semantic Map-Guided Multitask Neural Network for Remote Sensing Image Semantic Change Detection},
author={Long, Jiang and Liu, Sicong and Li, Mengmeng},
journal={IEEE GEOSCIENCE AND REMOTE SENSING LETTERS},
volume={22},
pages={1--5},
year={2025},
publisher={IEEE}
}
@article{long2025,
title={BGSNet: A boundary-guided Siamese multitask network for semantic change detection from high-resolution remote sensing images},
author={Long, Jiang and Liu, Sicong and Li, Mengmeng and Zhao, Hang and Jin, Yanmin},
journal={ISPRS Journal of Photogrammetry and Remote Sensing},
volume={225},
pages={221--237},
year={2025},
publisher={Elsevier}
}
@article{long2024,
title={Semantic change detection using a hierarchical semantic graph interaction network from high-resolution remote sensing images},
author={Long, Jiang and Li, Mengmeng and Wang, Xiaoqin and Stein, Alfred},
journal={ISPRS Journal of Photogrammetry and Remote Sensing},
volume={211},
pages={318--335},
year={2024},
publisher={Elsevier}
}
