Error in running code of end to end learning program #42
Closed
Description
Hello Bamos
In reference to your work with Priya Donti "Task-based End-to-end Model Learning
in Stochastic Optimization" [https://github.com/locuslab/e2e-model-learning.git]
I am trying to implement the battery storage code but unable to get the results.I am getting qpth error .Below attached is the code and error.
Running the main.py file in command line interface with
gives
```iter: 0, pri_resid: 9.11662e+01, dual_resid: 1.44910e-14, mu: 7.04911e+01
iter: 1, pri_resid: 1.55261e+01, dual_resid: 3.30352e-14, mu: 1.79035e+01
iter: 2, pri_resid: 1.32344e+00, dual_resid: 3.38888e-14, mu: 2.72255e+00
iter: 3, pri_resid: 1.31702e-01, dual_resid: 3.35632e-14, mu: 4.85668e-01
iter: 4, pri_resid: nan, dual_resid: nan, mu: nan
iter: 5, pri_resid: nan, dual_resid: nan, mu: nan
iter: 6, pri_resid: nan, dual_resid: nan, mu: nan
iter: 7, pri_resid: nan, dual_resid: nan, mu: nan
iter: 8, pri_resid: nan, dual_resid: nan, mu: nan
iter: 9, pri_resid: nan, dual_resid: nan, mu: nan
iter: 10, pri_resid: nan, dual_resid: nan, mu: nan
iter: 11, pri_resid: nan, dual_resid: nan, mu: nan
iter: 12, pri_resid: nan, dual_resid: nan, mu: nan
iter: 13, pri_resid: nan, dual_resid: nan, mu: nan
iter: 14, pri_resid: nan, dual_resid: nan, mu: nan
iter: 15, pri_resid: nan, dual_resid: nan, mu: nan
iter: 16, pri_resid: nan, dual_resid: nan, mu: nan
--------
qpth warning: Returning an inaccurate and potentially incorrect solution.
Some residual is large.
Your problem may be infeasible or difficult.
You can try using the CVXPY solver to see if your problem is feasible
and you can use the verbose option to check the convergence status of
our solver while increasing the number of iterations.
Advanced users:
You can also try to enable iterative refinement in the solver:
https://github.com/locuslab/qpth/issues/6'''
Metadata
Assignees
Labels
No labels