-
Notifications
You must be signed in to change notification settings - Fork 530
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Pipeline] Use dedicated simplification pipeline for TorchDynamo frontend #3376
Merged
sjain-stanford
merged 1 commit into
llvm:main
from
sjain-stanford:sambhav/fx_pipeline_fixes
May 22, 2024
Merged
[Pipeline] Use dedicated simplification pipeline for TorchDynamo frontend #3376
sjain-stanford
merged 1 commit into
llvm:main
from
sjain-stanford:sambhav/fx_pipeline_fixes
May 22, 2024
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
7e89083
to
2cb35fc
Compare
penguin-wwy
approved these changes
May 22, 2024
Can we get a post review from @rsuderman ? While probably ok, I wish we had left time for a design change like this to get reviewed by all parties vs an author and merge in 2 hours. |
Appreciate the note @stellaraccident , I will be on standby for @rsuderman 's review and send a follow-on to address/revise/revert as appropriate. |
BaneTrifa
pushed a commit
to BaneTrifa/torch-mlir
that referenced
this pull request
May 24, 2024
…tend (llvm#3376) Discord Thread: https://discord.com/channels/636084430946959380/1238330633328005243 ## Context: [This](https://github.com/llvm/torch-mlir/blob/main/python/torch_mlir/fx.py#L61) was updated to support e2e tests for the TorchDynamo frontend in Torch-MLIR, where we run FX decompositions and import the FX IR to generate Torch dialect, followed by `torch-function-to-torch-backend-pipeline`, skipping only the shape/type refinement for now. However, we should be able to skip many of the torch simplification passes, as depicted in the [frontend roadmap](https://github.com/llvm/torch-mlir/blob/main/docs/images/roadmap_frontend.png). Based on IREE's TorchDynamo [pipeline](https://github.com/iree-org/iree/blob/main/compiler/plugins/input/Torch/InputConversion/Passes.cpp#L29), the only two passes we seem to require are: `ReduceOpVariantsPass` and `DecomposeComplexOpsPass`. This is inline with our findings as well based on initial exploration. This PR creates a dedicated frontend simplification pipeline for TorchDynamo / FX Importer which calls only `ReduceOpVariantsPass` and `DecomposeComplexOpsPass`. We rely on the e2e fx_importer tests to ensure we're not regressing by removing many of the passes that were historically needed for TorchScript. One notable change here is that we do not call the `LowerToBackendContractPass` anymore, which used to call `TorchSimplificationPipeline` iteratively until VerifyBackendContract was clean. Some of this was required for the shape/type refinement to converge, which seems a non-issue for Dynamo frontend. Do we anticipate this (the iterative invocation of TorchSimplificationPipeline followed by VerifyBackendContract) to be worth retaining in the Dynamo frontend pipeline? If so, I can make those changes, PLMK.
sjarus
pushed a commit
to sjarus/torch-mlir
that referenced
this pull request
Jun 6, 2024
…tend (llvm#3376) Discord Thread: https://discord.com/channels/636084430946959380/1238330633328005243 ## Context: [This](https://github.com/llvm/torch-mlir/blob/main/python/torch_mlir/fx.py#L61) was updated to support e2e tests for the TorchDynamo frontend in Torch-MLIR, where we run FX decompositions and import the FX IR to generate Torch dialect, followed by `torch-function-to-torch-backend-pipeline`, skipping only the shape/type refinement for now. However, we should be able to skip many of the torch simplification passes, as depicted in the [frontend roadmap](https://github.com/llvm/torch-mlir/blob/main/docs/images/roadmap_frontend.png). Based on IREE's TorchDynamo [pipeline](https://github.com/iree-org/iree/blob/main/compiler/plugins/input/Torch/InputConversion/Passes.cpp#L29), the only two passes we seem to require are: `ReduceOpVariantsPass` and `DecomposeComplexOpsPass`. This is inline with our findings as well based on initial exploration. This PR creates a dedicated frontend simplification pipeline for TorchDynamo / FX Importer which calls only `ReduceOpVariantsPass` and `DecomposeComplexOpsPass`. We rely on the e2e fx_importer tests to ensure we're not regressing by removing many of the passes that were historically needed for TorchScript. One notable change here is that we do not call the `LowerToBackendContractPass` anymore, which used to call `TorchSimplificationPipeline` iteratively until VerifyBackendContract was clean. Some of this was required for the shape/type refinement to converge, which seems a non-issue for Dynamo frontend. Do we anticipate this (the iterative invocation of TorchSimplificationPipeline followed by VerifyBackendContract) to be worth retaining in the Dynamo frontend pipeline? If so, I can make those changes, PLMK.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Discord Thread: https://discord.com/channels/636084430946959380/1238330633328005243
Context:
This was updated to support e2e tests for the TorchDynamo frontend in Torch-MLIR, where we run FX decompositions and import the FX IR to generate Torch dialect, followed by
torch-function-to-torch-backend-pipeline
, skipping only the shape/type refinement for now. However, we should be able to skip many of the torch simplification passes, as depicted in the frontend roadmap.Based on IREE's TorchDynamo pipeline, the only two passes we seem to require are:
ReduceOpVariantsPass
andDecomposeComplexOpsPass
. This is inline with our findings as well based on initial exploration.This PR creates a dedicated frontend simplification pipeline for TorchDynamo / FX Importer which calls only
ReduceOpVariantsPass
andDecomposeComplexOpsPass
. We rely on the e2e fx_importer tests to ensure we're not regressing by removing many of the passes that were historically needed for TorchScript.One notable change here is that we do not call the
LowerToBackendContractPass
anymore, which used to callTorchSimplificationPipeline
iteratively until VerifyBackendContract was clean. Some of this was required for the shape/type refinement to converge, which seems a non-issue for Dynamo frontend. Do we anticipate this (the iterative invocation of TorchSimplificationPipeline followed by VerifyBackendContract) to be worth retaining in the Dynamo frontend pipeline? If so, I can make those changes, PLMK.