Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make getTypeForScalarType safer by returning FailureOr<Type> #1814

Merged
merged 1 commit into from
Jan 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion include/torch-mlir/Dialect/Torch/Utils/Utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ bool getListConstructElements(Value v, SmallVectorImpl<Value> &elems);
std::optional<int64_t> matchLegalConstantIndexIntoListOfSize(Value v,
int64_t length);
torch_upstream::ScalarType getScalarTypeForType(Type type);
Type getTypeForScalarType(
FailureOr<Type> getTypeForScalarType(
MLIRContext *context, torch_upstream::ScalarType dtypeInt,
mlir::IntegerType::SignednessSemantics signedness = IntegerType::Signed);

Expand Down
14 changes: 12 additions & 2 deletions lib/Conversion/TorchToLinalg/TensorConstructors.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -127,9 +127,14 @@ class ConvertConstantTensorAllocOp : public OpConversionPattern<OpTy> {
if (!matchPattern(op.getDtype(), m_TorchConstantInt(&dtypeInt)))
return rewriter.notifyMatchFailure(
op, "unimplemented: dtype must be a constant integer or none");
resultElementType = getTypeForScalarType(
FailureOr<Type> maybeResultElementType = getTypeForScalarType(
op->getContext(), (torch_upstream::ScalarType)dtypeInt,
IntegerType::Signless);
if (failed(maybeResultElementType)) {
return rewriter.notifyMatchFailure(
op, "unable to convert `dtypeInt` to builtin type");
}
resultElementType = *maybeResultElementType;
}

// Create an uninitialized tensor of `resultSize` shape and fill it with
Expand Down Expand Up @@ -227,9 +232,14 @@ class ConvertAtenEmptyMemoryFormatOp
if (!matchPattern(op.getDtype(), m_TorchConstantInt(&dtypeInt)))
return rewriter.notifyMatchFailure(
op, "unimplemented: dtype must be a constant integer or none");
resultElementType = getTypeForScalarType(
FailureOr<Type> maybeResultElementType = getTypeForScalarType(
op->getContext(), (torch_upstream::ScalarType)dtypeInt,
IntegerType::Signless);
if (failed(maybeResultElementType)) {
return rewriter.notifyMatchFailure(
op, "unable to convert `dtypeInt` to builtin type");
}
resultElementType = *maybeResultElementType;
}

// Create an uninitialized tensor of `resultSize` shape.
Expand Down
8 changes: 5 additions & 3 deletions lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -33,9 +33,11 @@ static bool isNoneOrFloatDtype(MLIRContext *context, Value dtype) {
int64_t dtypeInt;
if (!matchPattern(dtype, m_TorchConstantInt(&dtypeInt)))
return false;
Type resDtype =
FailureOr<Type> resDtype =
getTypeForScalarType(context, (torch_upstream::ScalarType)dtypeInt);
return resDtype.isa<mlir::FloatType>();
if (failed(resDtype))
return false;
return resDtype->isa<mlir::FloatType>();
}

// Helper function to compute the return type of the reduction function.
Expand Down Expand Up @@ -3803,4 +3805,4 @@ std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::Torch::createDecomposeComplexOpsPass(
ArrayRef<std::string> legalOps) {
return std::make_unique<DecomposeComplexOpsPass>(legalOps);
}
}
11 changes: 8 additions & 3 deletions lib/Dialect/Torch/Transforms/RefineTypes.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,9 @@ using namespace mlir::torch::Torch;
// -----------------------------------------------------------------------------

static Type getTypeForDTypeInteger(MLIRContext *context, int64_t dtypeInt) {
return getTypeForScalarType(context, (torch_upstream::ScalarType)dtypeInt);
FailureOr<Type> result =
getTypeForScalarType(context, (torch_upstream::ScalarType)dtypeInt);
return failed(result) ? Type() : *result;
}

static Type getDtypeOrDefault(MLIRContext *context, Value optionalDtype,
Expand Down Expand Up @@ -563,7 +565,9 @@ static Type getPromotedResultDType(ValueKnowledge *tensor, Type scalarType) {
/*skipRankCheck=*/true);
state =
updateResultTypeState(getDefaultDtypeForTorchScalar(scalarType), state);
return getTypeForScalarType(scalarType.getContext(), result_type(state));
FailureOr<Type> result =
getTypeForScalarType(scalarType.getContext(), result_type(state));
return failed(result) ? Type() : *result;
}

static SmallVector<std::optional<bool>>
Expand Down Expand Up @@ -600,7 +604,8 @@ static Type getPromotedResultType(MLIRContext *context,
return Type();
state = updateResultTypeState(tensor, rankIsNonZero, state, skipRankCheck);
}
return getTypeForScalarType(context, result_type(state));
FailureOr<Type> result = getTypeForScalarType(context, result_type(state));
return failed(result) ? Type() : *result;
}

static Type getPromotedResultTypeAssumingNonZeroRank(
Expand Down
9 changes: 7 additions & 2 deletions lib/Dialect/Torch/Transforms/SimplifyDtypeCalculations.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -46,10 +46,15 @@ static LogicalResult refineDtypeCalculateResult(DtypeCalculateOp op,
impliedTypeFromDtype = *torchType;
} else if (auto originalResultType =
result.getType().dyn_cast<BaseTensorType>()) {
FailureOr<Type> builtinType =
getTypeForScalarType(op->getContext(), dtypeScalarType);
if (failed(builtinType)) {
return rewriter.notifyMatchFailure(
op, "Failed to convert `dtypeScalarType` to a builtin type");
}
impliedTypeFromDtype =
originalResultType.cast<BaseTensorType>().getWithSizesAndDtype(
originalResultType.getOptionalSizes(),
getTypeForScalarType(op->getContext(), dtypeScalarType));
originalResultType.getOptionalSizes(), *builtinType);
} else {
return rewriter.notifyMatchFailure(op,
"Unimplemented: Expected result type to "
Expand Down
10 changes: 7 additions & 3 deletions lib/Dialect/Torch/Utils/Utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -83,9 +83,10 @@ Type Torch::getTypeForTorchType(
llvm::report_fatal_error("unhandled type for getTypeForTorchType");
}

Type Torch::getTypeForScalarType(
MLIRContext *context, torch_upstream::ScalarType dtypeInt,
mlir::IntegerType::SignednessSemantics signedness) {
FailureOr<Type>
Torch::getTypeForScalarType(MLIRContext *context,
torch_upstream::ScalarType dtypeInt,
mlir::IntegerType::SignednessSemantics signedness) {
switch (dtypeInt) {
case torch_upstream::ScalarType::Float:
return Float32Type::get(context);
Expand All @@ -110,6 +111,8 @@ Type Torch::getTypeForScalarType(
return mlir::ComplexType::get(Float64Type::get(context));
case torch_upstream::ScalarType::ComplexDouble:
return mlir::ComplexType::get(Float128Type::get(context));
case torch_upstream::ScalarType::Undefined:
return failure();
default:
llvm::report_fatal_error("unhandled type for getTypeForScalarType");
}
Expand All @@ -123,6 +126,7 @@ Torch::getTorchTypeForScalarType(MLIRContext *context,
return Torch::FloatType::get(context);
case torch_upstream::ScalarType::Long:
return Torch::IntType::get(context);
case torch_upstream::ScalarType::Undefined:
default:
return failure();
}
Expand Down