Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
186 changes: 114 additions & 72 deletions llvm/lib/Analysis/ScalarEvolution.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15510,6 +15510,78 @@ static const SCEV *getNextSCEVDivisibleByDivisor(const SCEV *Expr,
return SE.getConstant(*ExprVal + DivisorVal - Rem);
}

static bool collectDivisibilityInformation(
ICmpInst::Predicate Predicate, const SCEV *LHS, const SCEV *RHS,
DenseMap<const SCEV *, const SCEV *> &DivInfo,
DenseMap<const SCEV *, APInt> &Multiples, ScalarEvolution &SE) {
// If we have LHS == 0, check if LHS is computing a property of some unknown
// SCEV %v which we can rewrite %v to express explicitly.
if (Predicate != CmpInst::ICMP_EQ || !match(RHS, m_scev_Zero()))
return false;
// If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
// explicitly express that.
const SCEVUnknown *URemLHS = nullptr;
const SCEV *URemRHS = nullptr;
if (!match(LHS, m_scev_URem(m_SCEVUnknown(URemLHS), m_SCEV(URemRHS), SE)))
return false;

const SCEV *Multiple =
SE.getMulExpr(SE.getUDivExpr(URemLHS, URemRHS), URemRHS);
DivInfo[URemLHS] = Multiple;
if (auto *C = dyn_cast<SCEVConstant>(URemRHS))
Multiples[URemLHS] = C->getAPInt();
return true;
}

// Check if the condition is a divisibility guard (A % B == 0).
static bool isDivisibilityGuard(const SCEV *LHS, const SCEV *RHS,
ScalarEvolution &SE) {
const SCEV *X, *Y;
return match(LHS, m_scev_URem(m_SCEV(X), m_SCEV(Y), SE)) && RHS->isZero();
}

// Apply divisibility by \p Divisor on MinMaxExpr with constant values,
// recursively. This is done by aligning up/down the constant value to the
// Divisor.
static const SCEV *applyDivisibilityOnMinMaxExpr(const SCEV *MinMaxExpr,
APInt Divisor,
ScalarEvolution &SE) {
// Return true if \p Expr is a MinMax SCEV expression with a non-negative
// constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
// the non-constant operand and in \p LHS the constant operand.
auto IsMinMaxSCEVWithNonNegativeConstant =
[&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS,
const SCEV *&RHS) {
if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) {
if (MinMax->getNumOperands() != 2)
return false;
if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) {
if (C->getAPInt().isNegative())
return false;
SCTy = MinMax->getSCEVType();
LHS = MinMax->getOperand(0);
RHS = MinMax->getOperand(1);
return true;
}
}
return false;
};

const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr;
SCEVTypes SCTy;
if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
MinMaxRHS))
return MinMaxExpr;
auto IsMin = isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr);
assert(SE.isKnownNonNegative(MinMaxLHS) && "Expected non-negative operand!");
auto *DivisibleExpr =
IsMin ? getPreviousSCEVDivisibleByDivisor(MinMaxLHS, Divisor, SE)
: getNextSCEVDivisibleByDivisor(MinMaxLHS, Divisor, SE);
SmallVector<const SCEV *> Ops = {
applyDivisibilityOnMinMaxExpr(MinMaxRHS, Divisor, SE), DivisibleExpr};
return SE.getMinMaxExpr(SCTy, Ops);
}

void ScalarEvolution::LoopGuards::collectFromBlock(
ScalarEvolution &SE, ScalarEvolution::LoopGuards &Guards,
const BasicBlock *Block, const BasicBlock *Pred,
Expand All @@ -15520,19 +15592,13 @@ void ScalarEvolution::LoopGuards::collectFromBlock(
SmallVector<const SCEV *> ExprsToRewrite;
auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
const SCEV *RHS,
DenseMap<const SCEV *, const SCEV *>
&RewriteMap) {
DenseMap<const SCEV *, const SCEV *> &RewriteMap,
const LoopGuards &DivGuards) {
// WARNING: It is generally unsound to apply any wrap flags to the proposed
// replacement SCEV which isn't directly implied by the structure of that
// SCEV. In particular, using contextual facts to imply flags is *NOT*
// legal. See the scoping rules for flags in the header to understand why.

// If LHS is a constant, apply information to the other expression.
if (isa<SCEVConstant>(LHS)) {
std::swap(LHS, RHS);
Predicate = CmpInst::getSwappedPredicate(Predicate);
}

// Check for a condition of the form (-C1 + X < C2). InstCombine will
// create this form when combining two checks of the form (X u< C2 + C1) and
// (X >=u C1).
Expand Down Expand Up @@ -15565,67 +15631,6 @@ void ScalarEvolution::LoopGuards::collectFromBlock(
if (MatchRangeCheckIdiom())
return;

// Return true if \p Expr is a MinMax SCEV expression with a non-negative
// constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
// the non-constant operand and in \p LHS the constant operand.
auto IsMinMaxSCEVWithNonNegativeConstant =
[&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS,
const SCEV *&RHS) {
const APInt *C;
SCTy = Expr->getSCEVType();
return match(Expr, m_scev_MinMax(m_SCEV(LHS), m_SCEV(RHS))) &&
match(LHS, m_scev_APInt(C)) && C->isNonNegative();
};

// Apply divisibilty by \p Divisor on MinMaxExpr with constant values,
// recursively. This is done by aligning up/down the constant value to the
// Divisor.
std::function<const SCEV *(const SCEV *, const SCEV *)>
ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr,
const SCEV *Divisor) {
auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor);
if (!ConstDivisor)
return MinMaxExpr;
const APInt &DivisorVal = ConstDivisor->getAPInt();

const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr;
SCEVTypes SCTy;
if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
MinMaxRHS))
return MinMaxExpr;
auto IsMin =
isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr);
assert(SE.isKnownNonNegative(MinMaxLHS) &&
"Expected non-negative operand!");
auto *DivisibleExpr =
IsMin
? getPreviousSCEVDivisibleByDivisor(MinMaxLHS, DivisorVal, SE)
: getNextSCEVDivisibleByDivisor(MinMaxLHS, DivisorVal, SE);
SmallVector<const SCEV *> Ops = {
ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr};
return SE.getMinMaxExpr(SCTy, Ops);
};

// If we have LHS == 0, check if LHS is computing a property of some unknown
// SCEV %v which we can rewrite %v to express explicitly.
if (Predicate == CmpInst::ICMP_EQ && match(RHS, m_scev_Zero())) {
// If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
// explicitly express that.
const SCEVUnknown *URemLHS = nullptr;
const SCEV *URemRHS = nullptr;
if (match(LHS,
m_scev_URem(m_SCEVUnknown(URemLHS), m_SCEV(URemRHS), SE))) {
auto I = RewriteMap.find(URemLHS);
const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : URemLHS;
RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS);
const auto *Multiple =
SE.getMulExpr(SE.getUDivExpr(RewrittenLHS, URemRHS), URemRHS);
RewriteMap[URemLHS] = Multiple;
ExprsToRewrite.push_back(URemLHS);
return;
}
}

// Do not apply information for constants or if RHS contains an AddRec.
if (isa<SCEVConstant>(LHS) || SE.containsAddRecurrence(RHS))
return;
Expand Down Expand Up @@ -15655,7 +15660,9 @@ void ScalarEvolution::LoopGuards::collectFromBlock(
};

const SCEV *RewrittenLHS = GetMaybeRewritten(LHS);
const APInt &DividesBy = SE.getConstantMultiple(RewrittenLHS);
// Apply divisibility information when computing the constant multiple.
const APInt &DividesBy =
SE.getConstantMultiple(DivGuards.rewrite(RewrittenLHS));

// Collect rewrites for LHS and its transitive operands based on the
// condition.
Expand Down Expand Up @@ -15840,8 +15847,11 @@ void ScalarEvolution::LoopGuards::collectFromBlock(

// Now apply the information from the collected conditions to
// Guards.RewriteMap. Conditions are processed in reverse order, so the
// earliest conditions is processed first. This ensures the SCEVs with the
// earliest conditions is processed first, except guards with divisibility
// information, which are moved to the back. This ensures the SCEVs with the
// shortest dependency chains are constructed first.
SmallVector<std::tuple<CmpInst::Predicate, const SCEV *, const SCEV *>>
GuardsToProcess;
for (auto [Term, EnterIfTrue] : reverse(Terms)) {
SmallVector<Value *, 8> Worklist;
SmallPtrSet<Value *, 8> Visited;
Expand All @@ -15856,7 +15866,14 @@ void ScalarEvolution::LoopGuards::collectFromBlock(
EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
const auto *LHS = SE.getSCEV(Cmp->getOperand(0));
const auto *RHS = SE.getSCEV(Cmp->getOperand(1));
CollectCondition(Predicate, LHS, RHS, Guards.RewriteMap);
// If LHS is a constant, apply information to the other expression.
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

And if LHS is not a constant, we make an arbitrary choice? Should we be using CompareSCEVComplexity or something?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yep, that currently just preserves the current behavior. I added a TODO

// TODO: If LHS is not a constant, check if using CompareSCEVComplexity
// can improve results.
if (isa<SCEVConstant>(LHS)) {
std::swap(LHS, RHS);
Predicate = CmpInst::getSwappedPredicate(Predicate);
}
GuardsToProcess.emplace_back(Predicate, LHS, RHS);
continue;
}

Expand All @@ -15869,6 +15886,31 @@ void ScalarEvolution::LoopGuards::collectFromBlock(
}
}

// Process divisibility guards in reverse order to populate DivGuards early.
DenseMap<const SCEV *, APInt> Multiples;
LoopGuards DivGuards(SE);
for (const auto &[Predicate, LHS, RHS] : GuardsToProcess) {
if (!isDivisibilityGuard(LHS, RHS, SE))
continue;
collectDivisibilityInformation(Predicate, LHS, RHS, DivGuards.RewriteMap,
Multiples, SE);
}

for (const auto &[Predicate, LHS, RHS] : GuardsToProcess)
CollectCondition(Predicate, LHS, RHS, Guards.RewriteMap, DivGuards);

// Apply divisibility information last. This ensures it is applied to the
// outermost expression after other rewrites for the given value.
for (const auto &[K, Divisor] : Multiples) {
const SCEV *DivisorSCEV = SE.getConstant(Divisor);
Guards.RewriteMap[K] =
SE.getMulExpr(SE.getUDivExpr(applyDivisibilityOnMinMaxExpr(
Guards.rewrite(K), Divisor, SE),
DivisorSCEV),
DivisorSCEV);
ExprsToRewrite.push_back(K);
}

// Let the rewriter preserve NUW/NSW flags if the unsigned/signed ranges of
// the replacement expressions are contained in the ranges of the replaced
// expressions.
Expand Down
5 changes: 2 additions & 3 deletions llvm/test/Transforms/IndVarSimplify/loop-guard-order.ll
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ define i32 @urem_order1(i32 %n) {
; CHECK: [[LOOP]]:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ [[IV_NEXT:%.*]], %[[LOOP]] ], [ 0, %[[LOOP_PREHEADER]] ]
; CHECK-NEXT: call void @foo()
; CHECK-NEXT: [[IV_NEXT]] = add i32 [[IV]], 3
; CHECK-NEXT: [[IV_NEXT]] = add nuw i32 [[IV]], 3
; CHECK-NEXT: [[EC:%.*]] = icmp eq i32 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EC]], label %[[EXIT_LOOPEXIT:.*]], label %[[LOOP]]
; CHECK: [[EXIT_LOOPEXIT]]:
Expand Down Expand Up @@ -205,13 +205,12 @@ define i64 @test_loop_with_div_order_1(i64 %n) {
; CHECK-NEXT: [[PARITY_CHECK:%.*]] = icmp eq i64 [[IS_ODD]], 0
; CHECK-NEXT: br i1 [[PARITY_CHECK]], label %[[LOOP_PREHEADER:.*]], label %[[EXIT]]
; CHECK: [[LOOP_PREHEADER]]:
; CHECK-NEXT: [[UMAX:%.*]] = call i64 @llvm.umax.i64(i64 [[UPPER_BOUND]], i64 1)
; CHECK-NEXT: br label %[[LOOP:.*]]
; CHECK: [[LOOP]]:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[IV_NEXT:%.*]], %[[LOOP]] ], [ 0, %[[LOOP_PREHEADER]] ]
; CHECK-NEXT: [[DUMMY:%.*]] = load volatile i64, ptr null, align 8
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[IV_NEXT]], [[UMAX]]
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[IV_NEXT]], [[UPPER_BOUND]]
; CHECK-NEXT: br i1 [[EXITCOND]], label %[[LOOP]], label %[[EXIT_LOOPEXIT:.*]]
; CHECK: [[EXIT_LOOPEXIT]]:
; CHECK-NEXT: br label %[[EXIT]]
Expand Down