Skip to content

[mlir] Re-land Loosen restrictions on folding dynamic reshapes #142827

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
372 changes: 319 additions & 53 deletions mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,10 @@

#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/LogicalResult.h"

#include <numeric>
#include <optional>
Expand All @@ -28,67 +32,329 @@ mlir::getReassociationIndicesForReshape(ShapedType sourceType,
return std::nullopt;
}

std::optional<SmallVector<ReassociationIndices>>
mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape,
ArrayRef<int64_t> targetShape) {
if (sourceShape.size() <= targetShape.size())
return std::nullopt;
unsigned sourceDim = 0;
SmallVector<ReassociationIndices> reassociationMap;
reassociationMap.reserve(targetShape.size());
namespace {
/// A simple struct to represent ReassociationIndices as an inclusive interval.
/// It's designed to be feasibly minimal, so the call sites should manage the
/// validity of the range manually.
struct ReassociationIndexRange {
/// FIXME: Signed type is used for consistency with ReassociationIndices.
/// We should consider refactoring all reassociation utilities to use unsigned
/// types.
int64_t leftIdx = 0, rightIdx = 0;

/// Util for manual checks of the range's validity
LogicalResult verify() const {
return leftIdx >= 0 && (leftIdx <= rightIdx) ? success() : failure();
}

/// Checks range's containment within another range. Treats the edges
/// non-exclusively.
bool isInRange(const ReassociationIndexRange &outerRange) const {
return leftIdx >= outerRange.leftIdx && rightIdx <= outerRange.rightIdx;
}

unsigned size() const {
assert(succeeded(verify()));
return rightIdx - leftIdx + 1;
}
bool containsSingleIndex() const { return size() == 1; }

/// Collects indices that do not overlap between this and another range.
ReassociationIndices
getNonOverlappingIndicesWith(ReassociationIndexRange &rhs) const {
if (rightIdx < rhs.leftIdx) {
// The intervals do not overlap - concatenate the indices from both.
auto jointFullIndices = getFullIndices();
jointFullIndices.append(rhs.getFullIndices());
return jointFullIndices;
}
ReassociationIndices result;
// Handle the chunk left of the overlapping range.
int64_t leftStart = std::min(leftIdx, rhs.leftIdx);
int64_t leftEnd = std::max(leftIdx, rhs.leftIdx);
llvm::append_range(result, llvm::seq(leftStart, leftEnd));
// Handle the chunk right of the overlapping range. Symmetrically, we should
// skip the edge of the overlap AND include the rightmost index.
int64_t rightStart = std::min(rightIdx, rhs.rightIdx) + 1;
int64_t rightEnd = std::max(rightIdx, rhs.rightIdx);
if (rightStart < rightEnd)
llvm::append_range(result, llvm::seq_inclusive(rightStart, rightEnd));
return result;
}

/// Converts the range into ReassociationIndices.
ReassociationIndices getFullIndices() const {
ReassociationIndices result;
for (int64_t idx = leftIdx; idx <= rightIdx; ++idx) {
result.push_back(idx);
}
return result;
}
};
} // namespace

/// Starting from `sourceStartIdx`, searches `sourceShape` for the first
/// sequence that can be collapsed into a dynamic dimension (at least one must
/// be present in the source).
/// By default, lazily returns once the first dynamic dimension has been found.
/// Setting `matchGreedily` as `true` will also mark all subsequent
/// source dimensions for collapsing into the target.
static FailureOr<ReassociationIndexRange>
findReassociationRangeForDynamicDim(ArrayRef<int64_t> sourceShape,
int64_t sourceStartIdx,
bool matchGreedily = false) {
const unsigned numSourceDims = sourceShape.size();
ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};
std::optional<ReassociationIndexRange> resultRange = std::nullopt;

ReassociationIndexRange iterationRange{sourceStartIdx, sourceStartIdx};
for (; iterationRange.isInRange(sourceShapeAsRange);
iterationRange.rightIdx++) {
int64_t sourceSize = sourceShape[iterationRange.rightIdx];
if (sourceSize == ShapedType::kDynamic) {
resultRange = iterationRange;
break;
}
}
if (!resultRange)
return failure();
if (matchGreedily)
resultRange->rightIdx = sourceShapeAsRange.rightIdx;
return *resultRange;
}

ReassociationIndices currIndices;
/// Starting from `sourceStartIdx`, searches `sourceShape` for the first
/// sequence of static dimensions such that their product matches `targetSize`.
/// By default, lazily returns once the product matches the target size. Setting
/// `matchGreedily` as `true` will append all neighboring unit dimensions
/// (dimensions of 1) to the match.
static FailureOr<ReassociationIndexRange>
findReassociationRangeForSize(ArrayRef<int64_t> sourceShape,
int64_t sourceStartIdx, int64_t targetSize,
bool matchGreedily = false) {
const unsigned numSourceDims = sourceShape.size();
ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};
std::optional<ReassociationIndexRange> resultRange = std::nullopt;

ReassociationIndexRange iterationRange{sourceStartIdx, sourceStartIdx};
int64_t prodOfCollapsedDims = 1;
while (sourceDim < sourceShape.size()) {
unsigned targetDim = reassociationMap.size();
// If we have mapped all the target dimensions stop and handle the remaining
// tail of size-1 dimensions explicitly.
if (targetDim == targetShape.size())
while (iterationRange.isInRange(sourceShapeAsRange)) {
int64_t sourceSize = sourceShape[iterationRange.rightIdx];
if (sourceSize == ShapedType::kDynamic) {
// Reassociation for a static dim cannot include a dynamic dim. Reset
// induction variables to essentially restart the loop from the next
// source dimension.
prodOfCollapsedDims = 1;
iterationRange = {iterationRange.rightIdx + 1,
iterationRange.rightIdx + 1};
continue;
}
prodOfCollapsedDims *= sourceSize;
// If the target size has been exceeded without matching, we need to shift
// the range start right. From the start of the range, roll back the
// multiplication until the target size exceeds the product again.
while (prodOfCollapsedDims > targetSize &&
!iterationRange.containsSingleIndex()) {
int64_t frontSourceSize = sourceShape[iterationRange.leftIdx];
prodOfCollapsedDims /= frontSourceSize;
// Shrink the range rightwards
iterationRange.leftIdx++;
}
// We could've reached the target size with the current dimension,
// also as a result of the above shift to right.
if (prodOfCollapsedDims == targetSize) {
resultRange = iterationRange;
break;
}
// Increment the iteration range
iterationRange.rightIdx++;
}
if (!resultRange)
return failure();
if (matchGreedily) {
// We now want to collect all unit dimensions directly after the target
// product match. Advance the iterator to avoid OOB when the product match
// happens at the last element.
iterationRange.rightIdx++;
while (iterationRange.isInRange(sourceShapeAsRange) &&
sourceShape[iterationRange.rightIdx] == 1) {
resultRange = iterationRange;
iterationRange.rightIdx++;
}
}
return *resultRange;
}

int64_t currTargetShape = targetShape[targetDim];
while (sourceDim < (sourceShape.size() - 1) &&
sourceShape[sourceDim] != ShapedType::kDynamic &&
prodOfCollapsedDims * sourceShape[sourceDim] < currTargetShape) {
prodOfCollapsedDims *= sourceShape[sourceDim];
currIndices.push_back(sourceDim++);
/// Attempts to find a valid collapsing reassociation of `sourceShape` into
/// `targetShape` through a simple traversal. If successful, an array of source
/// index ranges is returned, correspondingly to each dimension in the target
/// shape. The resulting indices shall fully cover the `sourceShape` without
/// overlaps.
///
/// The algorithm is essentially a lazy one, searching for non-greedy matches -
/// it will only yield a greedy match for the last target dimension.
/// FIXME: The algorithm can only backtrack when it needs to append an offset
/// for a static target dimension to the preceding dynamic one (this retains the
/// linear complexity). As feasible, consider adding further backtracking
/// routines to enable more reassociations, e.g.:
/// - ?x2x?x2 into ?x2
static FailureOr<SmallVector<ReassociationIndexRange>>
findReassociationRangesForCollapse(ArrayRef<int64_t> sourceShape,
ArrayRef<int64_t> targetShape) {
unsigned numSourceDims = sourceShape.size(),
numTargetDims = targetShape.size();
assert(numSourceDims > numTargetDims);
ReassociationIndexRange sourceShapeAsRange{0, numSourceDims - 1};

SmallVector<ReassociationIndexRange> reassocRanges;
reassocRanges.reserve(numTargetDims);
// We'll iterate in strides of 2 to enable pseudo-backtracking for simple
// cases, e.g.:
// - ?x2x3x5 into ?x15
std::optional<int64_t> prevTargetSize = std::nullopt;
for (unsigned targetDimIdx = 0, sourceDimIdx = 0;
targetDimIdx < numTargetDims; ++targetDimIdx) {
int64_t targetSize = targetShape[targetDimIdx];
// Simply check if there are any subsequent target dimensions left - if not,
// the match must be made greedily.
bool shouldMatchGreedily = targetDimIdx == numTargetDims - 1;
FailureOr<ReassociationIndexRange> sourceRange;
if (targetSize == ShapedType::kDynamic) {
sourceRange = findReassociationRangeForDynamicDim(
sourceShape, sourceDimIdx, shouldMatchGreedily);
} else {
sourceRange = findReassociationRangeForSize(
sourceShape, sourceDimIdx, targetSize, shouldMatchGreedily);
}

// If the current expanded dimension is dynamic, then the collapsed
// dimensions should also be dynamic and product of all previous unprocessed
// dimensions of the expanded shape should be 1.
if (sourceShape[sourceDim] == ShapedType::kDynamic &&
(currTargetShape != ShapedType::kDynamic || prodOfCollapsedDims != 1))
return std::nullopt;

// If the collapsed dim is dynamic, the current expanded dim should also
// be dynamic.
if (currTargetShape == ShapedType::kDynamic &&
sourceShape[sourceDim] != ShapedType::kDynamic)
return std::nullopt;

// For static shapes, if the product of dimensions of the expanded shape
// should match the collapsed dimension shape.
if (prodOfCollapsedDims * sourceShape[sourceDim] != currTargetShape)
return std::nullopt;

currIndices.push_back(sourceDim++);
reassociationMap.emplace_back(ReassociationIndices{});
std::swap(reassociationMap.back(), currIndices);
prodOfCollapsedDims = 1;
// Run sanity checks on the returned index range.
if (failed(sourceRange) || failed(sourceRange->verify()) ||
!sourceRange->isInRange(sourceShapeAsRange))
return failure();
if (sourceRange->leftIdx > sourceDimIdx) {
// If some source dimensions had to be skipped in order to find a match,
// they must be collapsed into the directly preceding dynamic dimension.
if (!prevTargetSize || prevTargetSize != ShapedType::kDynamic)
return failure();
reassocRanges.back().rightIdx = sourceRange->leftIdx - 1;
}

// Store the gathered information as required for the next iteration.
prevTargetSize = targetSize;
sourceDimIdx = sourceRange->rightIdx + 1;
reassocRanges.push_back(*sourceRange);
}
// All the dimensions in the target must have been processed.
if (reassociationMap.size() != targetShape.size())
// Fail if the source shape wasn't a full match for the target shape. We only
// need to check the last recorded index - any other gaps should have been
// mended by the main loop.
if (reassocRanges.back().rightIdx < sourceShapeAsRange.rightIdx)
return failure();
return reassocRanges;
}

/// A variant of `findReassociationRangesForCollapse(...)` that can also scan
/// the shapes right-to-left.
static FailureOr<SmallVector<ReassociationIndexRange>>
findReassociationRangesForCollapse(ArrayRef<int64_t> sourceShape,
ArrayRef<int64_t> targetShape,
bool iterateRightToLeft) {
if (!iterateRightToLeft)
return findReassociationRangesForCollapse(sourceShape, targetShape);
// NB: To iterate right-to-left, we currently reverse the shapes and then
// reverse the result back. The reversed shapes must not be temporary, as
// we're passing through an ArrayRef.
// FIXME: It would be preferable to avoid the expensive copies. At the moment,
// this approach is chosen for readability of the main implementation.
std::vector<int64_t> sourceToReverse = sourceShape.vec(),
targetToReverse = targetShape.vec();
std::reverse(sourceToReverse.begin(), sourceToReverse.end());
std::reverse(targetToReverse.begin(), targetToReverse.end());
auto invertedRanges =
findReassociationRangesForCollapse(sourceToReverse, targetToReverse);
if (failed(invertedRanges))
return failure();
SmallVector<ReassociationIndexRange> &rangesToInvert = *invertedRanges;
unsigned numSourceDims = sourceShape.size();
// We have received the ranges for inverted shapes. Now we have to invert
// the ranges back to correspond with the original source shape.
for (auto &range : rangesToInvert) {
int64_t invLeftIdx = range.leftIdx, invRightIdx = range.rightIdx;
range.leftIdx = numSourceDims - 1 - invRightIdx;
range.rightIdx = numSourceDims - 1 - invLeftIdx;
}
// Also invert the ordering of the ranges to correspond with the original
// target shape.
std::reverse(rangesToInvert.begin(), rangesToInvert.end());
return rangesToInvert;
}

std::optional<SmallVector<ReassociationIndices>>
mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape,
ArrayRef<int64_t> targetShape) {
unsigned numSourceDims = sourceShape.size(),
numTargetDims = targetShape.size();
// We're supposed to search for a collapsing reassociation. If the sizes
// match, there's no actual collapsing taking place - it's either a no-op or a
// `tensor.reshape`-style reassociation (that would be beyond the scope of
// this utility).
if (numSourceDims <= numTargetDims)
return std::nullopt;
// Early handling for scalar target types.
if (numTargetDims == 0) {
ReassociationIndices allSourceIndices;
allSourceIndices.reserve(numSourceDims);
for (unsigned sourceDimIdx = 0; sourceDimIdx < numSourceDims;
++sourceDimIdx) {
int64_t sourceSize = sourceShape[sourceDimIdx];
// All source dimensions must be unit or dynamic.
if (sourceSize != 1 && sourceSize != ShapedType::kDynamic)
return std::nullopt;
allSourceIndices.push_back(sourceDimIdx);
}
return SmallVector<ReassociationIndices>{allSourceIndices};
}

// Collect source ranges by iterating over the target shape left-to-right.
FailureOr<SmallVector<ReassociationIndexRange>> maybeForwardRanges =
findReassociationRangesForCollapse(sourceShape, targetShape);
if (failed(maybeForwardRanges))
return std::nullopt;
auto &ranges = *maybeForwardRanges;
// Now do the same in reverse. We need to get another valid reassociation
// through some other strategy, and then compare the results in order to
// disambiguate mixed subshapes, such as:
// ?x?x? into ?x?, ?x2x? into ?x?, ?x2x3x6x? into ?x6x?
// This leads us to lose some of the reassociation opportunities that can only
// be found by iterating in a certain direction, e.g. 2x2x? into 2x? - without
// backtracking, the algorithm will fail right-to-left. However, this is the
// best way to preserve correctness.
FailureOr<SmallVector<ReassociationIndexRange>> maybeReverseRanges =
findReassociationRangesForCollapse(sourceShape, targetShape,
/*iterateRightToLeft=*/true);
if (failed(maybeReverseRanges))
return std::nullopt;
auto &reverseRanges = *maybeReverseRanges;

if (ranges.size() != numTargetDims || reverseRanges.size() != numTargetDims)
return std::nullopt;
// Process any remaining entries in the source shape. They all need to be
// 1 or dynamic.
for (; sourceDim < sourceShape.size(); sourceDim++) {
if (sourceShape[sourceDim] != ShapedType::kDynamic &&
sourceShape[sourceDim] != 1)
return std::nullopt;
// The map is empty when the target type is a scalar.
if (!reassociationMap.empty())
reassociationMap.back().push_back(sourceDim);
// Now we can check for ambiguity of each target dimension's reassociation. If
// successful, we put the full indices into our result map for the target
// shape.
SmallVector<ReassociationIndices> reassociationMap(numTargetDims);
for (unsigned targetDimIdx = 0; targetDimIdx < numTargetDims;
++targetDimIdx) {
ReassociationIndexRange &range = ranges[targetDimIdx];
ReassociationIndexRange &reverseRange = reverseRanges[targetDimIdx];
// Get non-overlapping indices between the ranges
ReassociationIndices nonMatchingIndices =
range.getNonOverlappingIndicesWith(reverseRange);
// Unit dimensions can be collapsed wherever - this is the only ambiguity
// that we allow.
for (int64_t sourceDimIdx : nonMatchingIndices) {
if (sourceShape[sourceDimIdx] != 1)
return std::nullopt;
}
reassociationMap[targetDimIdx] = range.getFullIndices();
}
return reassociationMap;
}
Expand Down
Loading
Loading