Skip to content

TSan: Support relaxed accesses and fences #142579

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions compiler-rt/lib/tsan/rtl/tsan_flags.inc
Original file line number Diff line number Diff line change
Expand Up @@ -80,3 +80,6 @@ TSAN_FLAG(bool, shared_ptr_interceptor, true,
TSAN_FLAG(bool, print_full_thread_history, false,
"If set, prints thread creation stacks for the threads involved in "
"the report and their ancestors up to the main thread.")
TSAN_FLAG(bool, correct_race_detection, false,
"If set, remove optimizations and execute correct race detection "
"supporting fences and release sequence.")
104 changes: 81 additions & 23 deletions compiler-rt/lib/tsan/rtl/tsan_interface_atomic.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,10 @@

using namespace __tsan;

static bool correctRaceDetection(){
return flags()->correct_race_detection;
}

#if !SANITIZER_GO && __TSAN_HAS_INT128
// Protects emulation of 128-bit atomic operations.
static StaticSpinMutex mutex128;
Expand Down Expand Up @@ -227,18 +231,36 @@ namespace {
template <typename T, T (*F)(volatile T *v, T op)>
static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
MemoryAccess(thr, pc, (uptr)a, AccessSize<T>(), kAccessWrite | kAccessAtomic);
if (LIKELY(mo == mo_relaxed))
return F(a, v);
if (!correctRaceDetection()){
if (LIKELY(mo == mo_relaxed))
return F(a, v);
}
SlotLocker locker(thr);
{
auto s = ctx->metamap.GetSyncOrCreate(thr, pc, (uptr)a, false);
RWLock lock(&s->mtx, IsReleaseOrder(mo));
if (IsAcqRelOrder(mo))
thr->clock.ReleaseAcquire(&s->clock);
else if (IsReleaseOrder(mo))
thr->clock.Release(&s->clock);
else if (IsAcquireOrder(mo))
thr->clock.Acquire(s->clock);
bool fullLock = correctRaceDetection() || IsReleaseOrder(mo);
RWLock lock(&s->mtx, fullLock);
if (!correctRaceDetection()){
if (IsAcqRelOrder(mo))
thr->clock.ReleaseAcquire(&s->clock);
else if (IsReleaseOrder(mo))
thr->clock.Release(&s->clock);
else if (IsAcquireOrder(mo))
thr->clock.Acquire(s->clock);
} else {
if (mo == mo_relaxed){
thr->clockA.Acquire(s->clock);
thr->clockR.Release(&s->clock);
} else if (IsAcqRelOrder(mo)) {
thr->clock.ReleaseAcquire(&s->clock);
} else if (IsReleaseOrder(mo)) {
thr->clockA.Acquire(s->clock);
thr->clock.Release(&s->clock);
} else if (IsAcquireOrder(mo)) {
thr->clock.Acquire(s->clock);
thr->clockR.Release(&s->clock);
}
}
v = F(a, v);
}
if (IsReleaseOrder(mo))
Expand All @@ -264,7 +286,7 @@ struct OpLoad {
DCHECK(IsLoadOrder(mo));
// This fast-path is critical for performance.
// Assume the access is atomic.
if (!IsAcquireOrder(mo)) {
if (!correctRaceDetection() && !IsAcquireOrder(mo)) {
MemoryAccess(thr, pc, (uptr)a, AccessSize<T>(),
kAccessRead | kAccessAtomic);
return NoTsanAtomic(mo, a);
Expand All @@ -276,7 +298,11 @@ struct OpLoad {
if (s) {
SlotLocker locker(thr);
ReadLock lock(&s->mtx);
thr->clock.Acquire(s->clock);
if (IsAcquireOrder(mo)) {
thr->clock.Acquire(s->clock);
} else if (correctRaceDetection()) {
thr->clockA.Acquire(s->clock);
}
// Re-read under sync mutex because we need a consistent snapshot
// of the value and the clock we acquire.
v = NoTsanAtomic(mo, a);
Expand Down Expand Up @@ -309,18 +335,22 @@ struct OpStore {
// Assume the access is atomic.
// Strictly saying even relaxed store cuts off release sequence,
// so must reset the clock.
if (!IsReleaseOrder(mo)) {
if (!correctRaceDetection() && !IsReleaseOrder(mo)) {
NoTsanAtomic(mo, a, v);
return;
}
SlotLocker locker(thr);
{
auto s = ctx->metamap.GetSyncOrCreate(thr, pc, (uptr)a, false);
Lock lock(&s->mtx);
thr->clock.ReleaseStore(&s->clock);
if (IsReleaseOrder(mo))
thr->clock.ReleaseStore(&s->clock);
else if (correctRaceDetection())
thr->clockR.ReleaseStore(&s->clock);
NoTsanAtomic(mo, a, v);
}
IncrementEpoch(thr);
if (IsReleaseOrder(mo))
IncrementEpoch(thr);
}
};

Expand Down Expand Up @@ -441,7 +471,7 @@ struct OpCAS {

MemoryAccess(thr, pc, (uptr)a, AccessSize<T>(),
kAccessWrite | kAccessAtomic);
if (LIKELY(mo == mo_relaxed && fmo == mo_relaxed)) {
if (LIKELY(!correctRaceDetection() && mo == mo_relaxed && fmo == mo_relaxed)) {
T cc = *c;
T pr = func_cas(a, cc, v);
if (pr == cc)
Expand All @@ -454,20 +484,36 @@ struct OpCAS {
bool success;
{
auto s = ctx->metamap.GetSyncOrCreate(thr, pc, (uptr)a, false);
RWLock lock(&s->mtx, release);
bool fullLock = correctRaceDetection() || release;
RWLock lock(&s->mtx, fullLock);
T cc = *c;
T pr = func_cas(a, cc, v);
success = pr == cc;
if (!success) {
*c = pr;
mo = fmo;
}
if (success && IsAcqRelOrder(mo))
thr->clock.ReleaseAcquire(&s->clock);
else if (success && IsReleaseOrder(mo))
thr->clock.Release(&s->clock);
else if (IsAcquireOrder(mo))
thr->clock.Acquire(s->clock);
if (!correctRaceDetection()){
if (success && IsAcqRelOrder(mo))
thr->clock.ReleaseAcquire(&s->clock);
else if (success && IsReleaseOrder(mo))
thr->clock.Release(&s->clock);
else if (IsAcquireOrder(mo))
thr->clock.Acquire(s->clock);
} else {
if (!IsAcquireOrder(mo)){
thr->clockA.Acquire(s->clock);
} else {
thr->clock.Acquire(s->clock);
}
if (success){
if (!IsReleaseOrder(mo)){
thr->clockR.Release(&s->clock);
} else {
thr->clock.Release(&s->clock);
}
}
}
}
if (success && release)
IncrementEpoch(thr);
Expand All @@ -487,7 +533,19 @@ struct OpFence {
static void NoTsanAtomic(morder mo) { __sync_synchronize(); }

static void Atomic(ThreadState *thr, uptr pc, morder mo) {
// FIXME(dvyukov): not implemented.
if (correctRaceDetection()){
SlotLocker locker(thr);
if (IsAcquireOrder(mo))
thr->clock.Acquire(&thr->clockA);
if (mo == mo_seq_cst){
auto s = ctx->metamap.GetSyncOrCreate(thr, pc, 0, false);
thr->clock.ReleaseAcquire(&s->clock);
}
if (IsReleaseOrder(mo)){
thr->clockR.Acquire(&thr->clock);
IncrementEpoch(thr);
}
}
__sync_synchronize();
}
};
Expand Down
2 changes: 2 additions & 0 deletions compiler-rt/lib/tsan/rtl/tsan_rtl.h
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,8 @@ struct alignas(SANITIZER_CACHE_LINE_SIZE) ThreadState {
atomic_sint32_t pending_signals;

VectorClock clock;
VectorClock clockR;
VectorClock clockA;

// This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
// We do not distinguish beteween ignoring reads and writes
Expand Down