Skip to content

Add constant-folding for unary NVVM intrinsics #141233

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
121 changes: 121 additions & 0 deletions llvm/include/llvm/IR/NVVMIntrinsicUtils.h
Original file line number Diff line number Diff line change
Expand Up @@ -334,6 +334,127 @@ inline bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID) {
return false;
}

inline bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID) {
switch (IntrinsicID) {
case Intrinsic::nvvm_ceil_ftz_f:
case Intrinsic::nvvm_cos_approx_ftz_f:
case Intrinsic::nvvm_ex2_approx_ftz_f:
case Intrinsic::nvvm_fabs_ftz:
case Intrinsic::nvvm_floor_ftz_f:
case Intrinsic::nvvm_lg2_approx_ftz_f:
case Intrinsic::nvvm_round_ftz_f:
case Intrinsic::nvvm_rsqrt_approx_ftz_d:
case Intrinsic::nvvm_rsqrt_approx_ftz_f:
case Intrinsic::nvvm_saturate_ftz_f:
case Intrinsic::nvvm_sin_approx_ftz_f:
case Intrinsic::nvvm_sqrt_rn_ftz_f:
case Intrinsic::nvvm_sqrt_approx_ftz_f:
return true;
case Intrinsic::nvvm_ceil_f:
case Intrinsic::nvvm_ceil_d:
case Intrinsic::nvvm_cos_approx_f:
case Intrinsic::nvvm_ex2_approx_d:
case Intrinsic::nvvm_ex2_approx_f:
case Intrinsic::nvvm_fabs:
case Intrinsic::nvvm_floor_f:
case Intrinsic::nvvm_floor_d:
case Intrinsic::nvvm_lg2_approx_d:
case Intrinsic::nvvm_lg2_approx_f:
case Intrinsic::nvvm_round_f:
case Intrinsic::nvvm_round_d:
case Intrinsic::nvvm_rsqrt_approx_d:
case Intrinsic::nvvm_rsqrt_approx_f:
case Intrinsic::nvvm_saturate_d:
case Intrinsic::nvvm_saturate_f:
case Intrinsic::nvvm_sin_approx_f:
case Intrinsic::nvvm_sqrt_f:
case Intrinsic::nvvm_sqrt_rn_d:
case Intrinsic::nvvm_sqrt_rn_f:
case Intrinsic::nvvm_sqrt_approx_f:
return false;
}
llvm_unreachable("Checking FTZ flag for invalid unary intrinsic");
return false;
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No need to return anything after llvm_unreachable

Applies here and in other functions using it.

}

inline bool RCPShouldFTZ(Intrinsic::ID IntrinsicID) {
switch (IntrinsicID) {
case Intrinsic::nvvm_rcp_rm_ftz_f:
case Intrinsic::nvvm_rcp_rn_ftz_f:
case Intrinsic::nvvm_rcp_rp_ftz_f:
case Intrinsic::nvvm_rcp_rz_ftz_f:
case Intrinsic::nvvm_rcp_approx_ftz_f:
case Intrinsic::nvvm_rcp_approx_ftz_d:
return true;
case Intrinsic::nvvm_rcp_rm_d:
case Intrinsic::nvvm_rcp_rm_f:
case Intrinsic::nvvm_rcp_rn_d:
case Intrinsic::nvvm_rcp_rn_f:
case Intrinsic::nvvm_rcp_rp_d:
case Intrinsic::nvvm_rcp_rp_f:
case Intrinsic::nvvm_rcp_rz_d:
case Intrinsic::nvvm_rcp_rz_f:
return false;
}
llvm_unreachable("Checking FTZ flag for invalid rcp intrinsic");
return false;
}

inline APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID) {
switch (IntrinsicID) {
case Intrinsic::nvvm_rcp_rm_f:
case Intrinsic::nvvm_rcp_rm_d:
case Intrinsic::nvvm_rcp_rm_ftz_f:
return APFloat::rmTowardNegative;

case Intrinsic::nvvm_rcp_approx_ftz_f:
case Intrinsic::nvvm_rcp_approx_ftz_d:
case Intrinsic::nvvm_rcp_rn_f:
case Intrinsic::nvvm_rcp_rn_d:
case Intrinsic::nvvm_rcp_rn_ftz_f:
return APFloat::rmNearestTiesToEven;

case Intrinsic::nvvm_rcp_rp_f:
case Intrinsic::nvvm_rcp_rp_d:
case Intrinsic::nvvm_rcp_rp_ftz_f:
return APFloat::rmNearestTiesToEven;

case Intrinsic::nvvm_rcp_rz_f:
case Intrinsic::nvvm_rcp_rz_d:
case Intrinsic::nvvm_rcp_rz_ftz_f:
return APFloat::rmTowardZero;
}
llvm_unreachable("Checking rounding mode for invalid rcp intrinsic");
return APFloat::roundingMode::Invalid;
}

inline bool RCPIsApprox(Intrinsic::ID IntrinsicID) {
switch (IntrinsicID) {
case Intrinsic::nvvm_rcp_approx_ftz_f:
case Intrinsic::nvvm_rcp_approx_ftz_d:
return true;

case Intrinsic::nvvm_rcp_rm_f:
case Intrinsic::nvvm_rcp_rm_d:
case Intrinsic::nvvm_rcp_rm_ftz_f:

case Intrinsic::nvvm_rcp_rn_f:
case Intrinsic::nvvm_rcp_rn_d:
case Intrinsic::nvvm_rcp_rn_ftz_f:

case Intrinsic::nvvm_rcp_rp_f:
case Intrinsic::nvvm_rcp_rp_d:
case Intrinsic::nvvm_rcp_rp_ftz_f:

case Intrinsic::nvvm_rcp_rz_f:
case Intrinsic::nvvm_rcp_rz_d:
case Intrinsic::nvvm_rcp_rz_ftz_f:
return false;
}
llvm_unreachable("Checking approx flag for invalid rcp intrinsic");
return false;
}

} // namespace nvvm
} // namespace llvm
#endif // LLVM_IR_NVVMINTRINSICUTILS_H
232 changes: 228 additions & 4 deletions llvm/lib/Analysis/ConstantFolding.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1776,6 +1776,67 @@ bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
case Intrinsic::nvvm_d2ull_rp:
case Intrinsic::nvvm_d2ull_rz:

// NVVM math intrinsics:
case Intrinsic::nvvm_ceil_d:
case Intrinsic::nvvm_ceil_f:
case Intrinsic::nvvm_ceil_ftz_f:

case Intrinsic::nvvm_cos_approx_f:
case Intrinsic::nvvm_cos_approx_ftz_f:

case Intrinsic::nvvm_ex2_approx_d:
case Intrinsic::nvvm_ex2_approx_f:
case Intrinsic::nvvm_ex2_approx_ftz_f:

case Intrinsic::nvvm_fabs:
case Intrinsic::nvvm_fabs_ftz:

case Intrinsic::nvvm_floor_d:
case Intrinsic::nvvm_floor_f:
case Intrinsic::nvvm_floor_ftz_f:

case Intrinsic::nvvm_lg2_approx_d:
case Intrinsic::nvvm_lg2_approx_f:
case Intrinsic::nvvm_lg2_approx_ftz_f:

case Intrinsic::nvvm_rcp_rm_d:
case Intrinsic::nvvm_rcp_rm_f:
case Intrinsic::nvvm_rcp_rm_ftz_f:
case Intrinsic::nvvm_rcp_rn_d:
case Intrinsic::nvvm_rcp_rn_f:
case Intrinsic::nvvm_rcp_rn_ftz_f:
case Intrinsic::nvvm_rcp_rp_d:
case Intrinsic::nvvm_rcp_rp_f:
case Intrinsic::nvvm_rcp_rp_ftz_f:
case Intrinsic::nvvm_rcp_rz_d:
case Intrinsic::nvvm_rcp_rz_f:
case Intrinsic::nvvm_rcp_rz_ftz_f:
case Intrinsic::nvvm_rcp_approx_ftz_d:
case Intrinsic::nvvm_rcp_approx_ftz_f:

case Intrinsic::nvvm_round_d:
case Intrinsic::nvvm_round_f:
case Intrinsic::nvvm_round_ftz_f:

case Intrinsic::nvvm_rsqrt_approx_d:
case Intrinsic::nvvm_rsqrt_approx_f:
case Intrinsic::nvvm_rsqrt_approx_ftz_d:
case Intrinsic::nvvm_rsqrt_approx_ftz_f:

case Intrinsic::nvvm_saturate_d:
case Intrinsic::nvvm_saturate_f:
case Intrinsic::nvvm_saturate_ftz_f:

case Intrinsic::nvvm_sin_approx_f:
case Intrinsic::nvvm_sin_approx_ftz_f:

case Intrinsic::nvvm_sqrt_f:
case Intrinsic::nvvm_sqrt_rn_d:
case Intrinsic::nvvm_sqrt_rn_f:
case Intrinsic::nvvm_sqrt_rn_ftz_f:
case Intrinsic::nvvm_sqrt_approx_f:
case Intrinsic::nvvm_sqrt_approx_ftz_f:

// Sign operations are actually bitwise operations, they do not raise
// exceptions even for SNANs.
case Intrinsic::fabs:
Expand All @@ -1791,6 +1852,7 @@ bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
case Intrinsic::nearbyint:
case Intrinsic::rint:
case Intrinsic::canonicalize:

// Constrained intrinsics can be folded if FP environment is known
// to compiler.
case Intrinsic::experimental_constrained_fma:
Expand Down Expand Up @@ -1944,16 +2006,32 @@ static const APFloat FTZPreserveSign(const APFloat &V) {
return V;
}

Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
Type *Ty) {
// Get only the upper word of the input double in 1.11.20 format
// by making the lower 32-bits of the mantissa all 0.
static const APFloat ZeroLower32Bits(const APFloat &V) {
assert(V.getSizeInBits(V.getSemantics()) == 64);
uint64_t DoubleBits = V.bitcastToAPInt().getZExtValue();
DoubleBits &= 0xffffffff00000000;
return APFloat(V.getSemantics(), APInt(64, DoubleBits, false, false));
}

Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, Type *Ty,
bool ShouldFTZPreservingSign = false) {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm curious why sign-preserving FTZ is the special case? Is a non-sign-preserving FTZ a thing?

Afaict, all we care here is should we FTZ or not, and sign-preserving FTZ is the only one we have implemented in const-folding code. Perhaps the parameter should be called just doFTZ ?

llvm_fenv_clearexcept();
double Result = NativeFP(V.convertToDouble());
auto Input = ShouldFTZPreservingSign ? FTZPreserveSign(V) : V;
double Result = NativeFP(Input.convertToDouble());
if (llvm_fenv_testexcept()) {
llvm_fenv_clearexcept();
return nullptr;
}

return GetConstantFoldFPValue(Result, Ty);
Constant *Output = GetConstantFoldFPValue(Result, Ty);
if (ShouldFTZPreservingSign) {
const auto *CFP = static_cast<ConstantFP *>(Output);
return ConstantFP::get(Ty->getContext(),
FTZPreserveSign(CFP->getValueAPF()));
}
return Output;
}

#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
Expand Down Expand Up @@ -2524,6 +2602,152 @@ static Constant *ConstantFoldScalarCall1(StringRef Name,
return ConstantFoldFP(cosh, APF, Ty);
case Intrinsic::sqrt:
return ConstantFoldFP(sqrt, APF, Ty);

// NVVM Intrinsics:
case Intrinsic::nvvm_ceil_ftz_f:
case Intrinsic::nvvm_ceil_f:
case Intrinsic::nvvm_ceil_d:
return ConstantFoldFP(ceil, APF, Ty,
nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID));

case Intrinsic::nvvm_cos_approx_ftz_f:
case Intrinsic::nvvm_cos_approx_f:
return ConstantFoldFP(cos, APF, Ty,
nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID));

case Intrinsic::nvvm_ex2_approx_ftz_f:
case Intrinsic::nvvm_ex2_approx_d:
case Intrinsic::nvvm_ex2_approx_f:
return ConstantFoldFP(exp2, APF, Ty,
nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID));

case Intrinsic::nvvm_fabs_ftz:
case Intrinsic::nvvm_fabs:
return ConstantFoldFP(fabs, APF, Ty,
nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID));

case Intrinsic::nvvm_floor_ftz_f:
case Intrinsic::nvvm_floor_f:
case Intrinsic::nvvm_floor_d:
return ConstantFoldFP(floor, APF, Ty,
nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID));

case Intrinsic::nvvm_lg2_approx_ftz_f:
case Intrinsic::nvvm_lg2_approx_d:
case Intrinsic::nvvm_lg2_approx_f: {
if (APF.isNegative() || APF.isZero())
return nullptr;
return ConstantFoldFP(log2, APF, Ty,
nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID));
}

case Intrinsic::nvvm_rcp_rm_ftz_f:
case Intrinsic::nvvm_rcp_rn_ftz_f:
case Intrinsic::nvvm_rcp_rp_ftz_f:
case Intrinsic::nvvm_rcp_rz_ftz_f:
case Intrinsic::nvvm_rcp_approx_ftz_f:
case Intrinsic::nvvm_rcp_approx_ftz_d:
case Intrinsic::nvvm_rcp_rm_d:
case Intrinsic::nvvm_rcp_rm_f:
case Intrinsic::nvvm_rcp_rn_d:
case Intrinsic::nvvm_rcp_rn_f:
case Intrinsic::nvvm_rcp_rp_d:
case Intrinsic::nvvm_rcp_rp_f:
case Intrinsic::nvvm_rcp_rz_d:
case Intrinsic::nvvm_rcp_rz_f: {
APFloat::roundingMode RoundMode = nvvm::GetRCPRoundingMode(IntrinsicID);
bool IsApprox = nvvm::RCPIsApprox(IntrinsicID);
bool IsFTZ = nvvm::RCPShouldFTZ(IntrinsicID);

auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
if (IntrinsicID == Intrinsic::nvvm_rcp_approx_ftz_d)
Denominator = ZeroLower32Bits(Denominator);
if (IsApprox && Denominator.isZero()) {
// According to the PTX spec, approximate rcp should return infinity
// with the same sign as the denominator when dividing by 0.
APFloat Inf = APFloat::getInf(APF.getSemantics(), APF.isNegative());
return ConstantFP::get(Ty->getContext(), Inf);
}
APFloat Res = APFloat::getOne(APF.getSemantics());
APFloat::opStatus Status = Res.divide(Denominator, RoundMode);

if (Status == APFloat::opOK || Status == APFloat::opInexact) {
if (IsFTZ)
Res = FTZPreserveSign(Res);
if (IntrinsicID == Intrinsic::nvvm_rcp_approx_ftz_d)
Res = ZeroLower32Bits(Res);
return ConstantFP::get(Ty->getContext(), Res);
}
return nullptr;
}

case Intrinsic::nvvm_round_ftz_f:
case Intrinsic::nvvm_round_f:
case Intrinsic::nvvm_round_d:
return ConstantFoldFP(round, APF, Ty,
nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID));

case Intrinsic::nvvm_rsqrt_approx_ftz_d:
case Intrinsic::nvvm_rsqrt_approx_ftz_f:
case Intrinsic::nvvm_rsqrt_approx_d:
case Intrinsic::nvvm_rsqrt_approx_f: {
bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
auto V = IsFTZ ? FTZPreserveSign(APF) : APF;

if (IntrinsicID == Intrinsic::nvvm_rsqrt_approx_ftz_d)
V = ZeroLower32Bits(V);

APFloat SqrtV(sqrt(V.convertToDouble()));

if (Ty->isFloatTy()) {
bool lost;
SqrtV.convert(APF.getSemantics(), APFloat::rmNearestTiesToEven,
&lost);
}

APFloat Res = APFloat::getOne(APF.getSemantics());
Res.divide(SqrtV, APFloat::rmNearestTiesToEven);

if (IntrinsicID == Intrinsic::nvvm_rsqrt_approx_ftz_d)
Res = ZeroLower32Bits(Res);

// We do not need to flush the output for ftz because it is impossible
// for 1/sqrt(x) to be a denormal value. If x is the largest fp value,
// sqrt(x) will be a number with the exponent approximately halved and
// the reciprocal of that number can't be small enough to be denormal.
return ConstantFP::get(Ty->getContext(), Res);
}

case Intrinsic::nvvm_saturate_ftz_f:
case Intrinsic::nvvm_saturate_d:
case Intrinsic::nvvm_saturate_f: {
bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
if (V.isNegative() || V.isZero() || V.isNaN())
return ConstantFP::getZero(Ty);
APFloat One = APFloat::getOne(APF.getSemantics());
if (V > One)
return ConstantFP::get(Ty->getContext(), One);
return ConstantFP::get(Ty->getContext(), APF);
}

case Intrinsic::nvvm_sin_approx_ftz_f:
case Intrinsic::nvvm_sin_approx_f:
return ConstantFoldFP(sin, APF, Ty,
nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID));

case Intrinsic::nvvm_sqrt_rn_ftz_f:
case Intrinsic::nvvm_sqrt_approx_ftz_f:
case Intrinsic::nvvm_sqrt_f:
case Intrinsic::nvvm_sqrt_rn_d:
case Intrinsic::nvvm_sqrt_rn_f:
case Intrinsic::nvvm_sqrt_approx_f:
if (APF.isNegative())
return nullptr;
return ConstantFoldFP(sqrt, APF, Ty,
nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID));

// AMDGCN Intrinsics:
case Intrinsic::amdgcn_cos:
case Intrinsic::amdgcn_sin: {
double V = getValueAsDouble(Op);
Expand Down
Loading
Loading