-
Notifications
You must be signed in to change notification settings - Fork 13.5k
[mlir][linalg] Move vectorization tests for pad + insert_slice Ops (nfc) #140877
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
This patch moves vectorization tests for `tensor.pad` and `tensor.insert_slice` into dedicated files under a new subdirectory for the vectorizer. The goal is to better organize the growing set of tests, which are currently difficult to navigate. This change is also a preparatory step for upcoming work: I’ll soon be updating the vectorization logic for `tensor.pad` + `tensor.insert_slice`. With the new structure in place, two things will be clear in follow-up changes: * Only tests related to `tensor.pad` and `tensor.insert_slice` are being updated. * Only the relevant tests will be touched (e.g., when changing mask generation, only tests involving masking will be affected).
@llvm/pr-subscribers-mlir-linalg @llvm/pr-subscribers-mlir Author: Andrzej Warzyński (banach-space) ChangesThis patch moves vectorization tests for This change is also a preparatory step for upcoming work: I’ll soon be
Patch is 98.83 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/140877.diff 6 Files Affected:
diff --git a/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir b/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
index 9f2ee47b45b3e..b282c57e3e4cb 100644
--- a/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
@@ -889,207 +889,6 @@ module attributes {transform.with_named_sequence} {
// -----
-// CHECK-LABEL: func @pad_static(
-// CHECK-SAME: %[[ARG0:.*]]: tensor<2x?x2xf32>, %[[PAD:.*]]: f32
-// CHECK-NOT: tensor.pad
-// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
-// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
-// CHECK-DAG: %[[INIT:.*]] = tensor.empty() : tensor<2x3x4xf32>
-// CHECK-DAG: %[[VEC:.*]] = vector.broadcast %[[PAD]] : f32 to vector<2x3x4xf32>
-// CHECK: %[[FILL:.*]] = vector.transfer_write %[[VEC]], %[[INIT]]{{.*}} : vector<2x3x4xf32>, tensor<2x3x4xf32>
-// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, false, true]} : tensor<2x?x2xf32>, vector<2x3x2xf32>
-// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[READ]], %[[FILL]][%[[C0]], %[[C0]], %[[C2]]] {in_bounds = [true, true, true]} : vector<2x3x2xf32>, tensor<2x3x4xf32>
-// CHECK: return %[[RESULT]]
-func.func @pad_static(%arg0: tensor<2x?x2xf32>, %pad_value: f32) -> tensor<2x3x4xf32> {
- %0 = tensor.pad %arg0 low[0, 0, 2] high[0, 1, 0] {
- ^bb0(%arg1: index, %arg2: index, %arg3: index):
- tensor.yield %pad_value : f32
- } : tensor<2x?x2xf32> to tensor<2x3x4xf32>
- return %0 : tensor<2x3x4xf32>
-}
-
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-// -----
-
-// CHECK-LABEL: func @pad_static_source(
-// CHECK-SAME: %[[ARG0:.*]]: tensor<2x5x2xf32>, %[[PAD:.*]]: f32
-// CHECK-NOT: tensor.pad
-// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
-// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
-// CHECK: %[[INIT:.*]] = tensor.empty() : tensor<2x6x4xf32>
-// CHECK: %[[VEC:.*]] = vector.broadcast %[[PAD]] : f32 to vector<2x6x4xf32>
-// CHECK: %[[FILL:.*]] = vector.transfer_write %[[VEC]], %[[INIT]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<2x6x4xf32>, tensor<2x6x4xf32>
-// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]], %[[C0]]], %{{.*}} {in_bounds = [true, true, true]} : tensor<2x5x2xf32>, vector<2x5x2xf32>
-// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[FILL]][%[[C0]], %[[C0]], %[[C2]]] {in_bounds = [true, true, true]} : vector<2x5x2xf32>, tensor<2x6x4xf32>
-// CHECK: return %[[WRITE]]
-func.func @pad_static_source(%arg0: tensor<2x5x2xf32>, %pad_value: f32) -> tensor<2x6x4xf32> {
- %0 = tensor.pad %arg0 low[0, 0, 2] high[0, 1, 0] {
- ^bb0(%arg1: index, %arg2: index, %arg3: index):
- tensor.yield %pad_value : f32
- } : tensor<2x5x2xf32> to tensor<2x6x4xf32>
- return %0 : tensor<2x6x4xf32>
-}
-
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-
-// -----
-
-// CHECK-LABEL: func @pad_static_dynamic(
-// CHECK-SAME: %[[SRC:.*]]: tensor<1x2x2x?xf32>, %[[LOW:.*]]: index, %[[HIGH:.*]]: index
-// CHECK-NOT: tensor.pad
-// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
-// CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
-// CHECK-DAG: %[[C5:.*]] = arith.constant 5 : index
-// CHECK: %[[V0:.*]] = arith.addi %[[LOW]], %[[C2]] : index
-// CHECK: %[[V1:.*]] = arith.addi %[[V0]], %[[C3]] : index
-// CHECK: %[[V2:.*]] = arith.addi %[[HIGH]], %[[C5]] : index
-// CHECK: %[[DIM3:.*]] = tensor.dim %[[SRC]], %[[C3]] : tensor<1x2x2x?xf32>
-// CHECK: %[[V4:.*]] = arith.addi %[[DIM3]], %[[C3]] : index
-// CHECK: %[[V5:.*]] = arith.addi %[[V4]], %[[C2]] : index
-// CHECK: %[[INIT:.*]] = tensor.empty(%[[V1]], %[[V2]], %[[V5]]) : tensor<6x?x?x?xf32>
-// CHECK: %[[FILL:.*]] = linalg.fill ins(%{{.*}} : f32) outs(%[[INIT]] : tensor<6x?x?x?xf32>) -> tensor<6x?x?x?xf32>
-// CHECK: %[[SRCDIM:.*]] = tensor.dim %[[SRC]], %[[C3]] : tensor<1x2x2x?xf32>
-// CHECK: %[[RESULT:.*]] = tensor.insert_slice %[[SRC]] into %[[FILL]][2, %[[LOW]], 3, 3] [1, 2, 2, %[[SRCDIM]]] [1, 1, 1, 1] : tensor<1x2x2x?xf32> into tensor<6x?x?x?xf32>
-// CHECK: return %[[RESULT]]
-func.func @pad_static_dynamic(%arg0: tensor<1x2x2x?xf32>, %low: index, %high: index,
- %pad_value: f32) -> tensor<6x?x?x?xf32> {
- %0 = tensor.pad %arg0 low[2, %low, 3, 3] high[3, 3, %high, 2] {
- ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index):
- tensor.yield %pad_value : f32
- } : tensor<1x2x2x?xf32> to tensor<6x?x?x?xf32>
- return %0 : tensor<6x?x?x?xf32>
-}
-
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-// -----
-
-// CHECK-LABEL: func @pad_static_complex(
-// CHECK-NOT: vector<
-func.func @pad_static_complex(%arg0: tensor<2x5x2xcomplex<f32>>, %pad_value: complex<f32>) -> tensor<2x6x4xcomplex<f32>> {
- %0 = tensor.pad %arg0 low[0, 0, 2] high[0, 1, 0] {
- ^bb0(%arg1: index, %arg2: index, %arg3: index):
- tensor.yield %pad_value : complex<f32>
- } : tensor<2x5x2xcomplex<f32>> to tensor<2x6x4xcomplex<f32>>
- return %0 : tensor<2x6x4xcomplex<f32>>
-}
-
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-// -----
-
-func.func private @make_vector() -> tensor<12x13xf32>
-
-// CHECK-LABEL: func.func @pad_and_insert_slice_dest(
-// CHECK-SAME: %[[ARG_0:.*]]: tensor<1x5x6xf32>) -> tensor<1x12x13xf32> {
-// CHECK: %[[C0:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK: %[[CST:.*]] = arith.constant dense<5.000000e+00> : vector<1x12x13xf32>
-// CHECK: %[[C0_IDX:.*]] = arith.constant 0 : index
-// CHECK: %[[PAD_VAL:.*]] = arith.constant 5.000000e+00 : f32
-// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<1x12x13xf32>
-// CHECK: %[[WRITE_1:.*]] = vector.transfer_write %[[CST]], %[[EMPTY]]{{\[}}%[[C0_IDX]], %[[C0_IDX]], %[[C0_IDX]]] {in_bounds = [true, true, true]} : vector<1x12x13xf32>, tensor<1x12x13xf32>
-// CHECK: %[[READ_1:.*]] = vector.transfer_read %[[ARG_0]]{{\[}}%[[C0_IDX]], %[[C0_IDX]], %[[C0_IDX]]], %[[PAD_VAL]] {in_bounds = [true, true, true]} : tensor<1x5x6xf32>, vector<1x5x6xf32>
-// CHECK: %[[WRITE_2:.*]] = vector.transfer_write %[[READ_1]], %[[WRITE_1]]{{\[}}%[[C0_IDX]], %[[C0_IDX]], %[[C0_IDX]]] {in_bounds = [true, true, true]} : vector<1x5x6xf32>, tensor<1x12x13xf32>
-// CHECK: %[[MAKE_VEC:.*]] = call @make_vector() : () -> tensor<12x13xf32>
-// CHECK: %[[READ_2:.*]] = vector.transfer_read %[[MAKE_VEC]]{{\[}}%[[C0_IDX]], %[[C0_IDX]]], %[[C0]] {in_bounds = [true, true]} : tensor<12x13xf32>, vector<12x13xf32>
-// CHECK: %[[RES:.*]] = vector.transfer_write %[[READ_2]], %[[WRITE_2]]{{\[}}%[[C0_IDX]], %[[C0_IDX]], %[[C0_IDX]]] {in_bounds = [true, true]} : vector<12x13xf32>, tensor<1x12x13xf32>
-// CHECK: return %[[RES]] : tensor<1x12x13xf32>
-func.func @pad_and_insert_slice_dest(
- %arg0: tensor<1x5x6xf32>) -> tensor<1x12x13xf32> {
- %c5 = arith.constant 5.0 : f32
- %0 = tensor.pad %arg0 low[0, 0, 0] high[0, 7, 7] {
- ^bb0(%arg2: index, %arg3: index, %arg4: index):
- tensor.yield %c5 : f32
- } : tensor<1x5x6xf32> to tensor<1x12x13xf32>
- %1 = call @make_vector() : () -> tensor<12x13xf32>
- %r = tensor.insert_slice %1 into %0[0, 0, 0][1, 12, 13][1, 1, 1] : tensor<12x13xf32> into tensor<1x12x13xf32>
- return %r : tensor<1x12x13xf32>
-}
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %3 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %4 = transform.get_parent_op %3 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %5 = transform.structured.vectorize_children_and_apply_patterns %4 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-// -----
-
-// CHECK-LABEL: func @pad_tensor_non_const_pad_value
-// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
-// CHECK-NOT: tensor.pad
-// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
-// CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
-// CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
-// CHECK: %[[FILL:.*]] = tensor.generate
-// CHECK: %[[RES:.*]] = arith.mulf
-// CHECK: tensor.yield %[[RES]] : f32
-// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %{{.*}} {in_bounds = [true, true]} : tensor<5x6xf32>, vector<5x6xf32>
-// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[FILL]][%[[C3]], %[[C4]]] {in_bounds = [true, true]} : vector<5x6xf32>, tensor<12x13xf32>
-// CHECK: return %[[WRITE]]
-func.func @pad_tensor_non_const_pad_value(%arg0: tensor<5x6xf32>) -> tensor<12x13xf32> {
- %c0 = arith.constant 0 : index
- %c5 = arith.constant 5.0 : f32
- %0 = tensor.pad %arg0 low[3, 4] high[4, 3] {
- ^bb0(%arg1: index, %arg2: index):
- %i1 = arith.index_cast %arg1 : index to i32
- %i2 = arith.index_cast %arg2 : index to i32
- %f1 = arith.sitofp %i1 : i32 to f32
- %f2 = arith.sitofp %i2 : i32 to f32
- %m = arith.mulf %f1, %f2 : f32
- tensor.yield %m : f32
- } : tensor<5x6xf32> to tensor<12x13xf32>
- return %0 : tensor<12x13xf32>
-}
-
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %3 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %4 = transform.get_parent_op %3 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %5 = transform.structured.vectorize_children_and_apply_patterns %4 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-// -----
-
// CHECK-LABEL: func @sum_exp
func.func @sum_exp(%input: tensor<4x16x8xf32>, %output: tensor<4x16xf32>)
-> tensor<4x16xf32>
@@ -1805,29 +1604,6 @@ module attributes {transform.with_named_sequence} {
// -----
-// CHECK-LABEL: func @test_masked_pad_static_dynamic
-func.func @test_masked_pad_static_dynamic(%arg0: tensor<1x2x2x?xf32>, %low: index, %high: index,
- %pad_value: f32) -> tensor<6x?x?x?xf32> {
- // CHECK: tensor.pad
- %0 = tensor.pad %arg0 low[2, %low, 3, 3] high[3, 3, %high, 2] {
- ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index):
- tensor.yield %pad_value : f32
- } : tensor<1x2x2x?xf32> to tensor<6x?x?x?xf32>
- return %0 : tensor<6x?x?x?xf32>
-}
-
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-// -----
-
func.func @zero_dim_tensor(%input: tensor<f32>, %output: tensor<f32>) -> tensor<f32>
{
%0 = linalg.generic { indexing_maps = [ affine_map<() -> ()>, affine_map<() -> ()> ],
@@ -2001,94 +1777,3 @@ module attributes {transform.with_named_sequence} {
transform.yield
}
}
-
-// -----
-
-///----------------------------------------------------------------------------------------
-/// tensor.insert_slice
-///----------------------------------------------------------------------------------------
-
-// The pad value for xfer-read is neither needed nor available - use the default (0.0).
-
-// CHECK-LABEL: func @insert_static_slice_default_pad
-// CHECK-SAME: %[[ARG_0:.*]]: tensor<1x2x3xf32>,
-// CHECK-SAME: %[[ARG_1:.*]]: tensor<9x8x7x1x2x3xf32>) -> tensor<9x8x7x1x2x3xf32> {
-// CHECK: %[[PAD:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK: %[[C0:.*]] = arith.constant 0 : index
-// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG_0]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x2x3xf32>, vector<1x2x3xf32>
-// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[ARG_1]]{{\[}}%[[C0]], %[[C0]], %[[C0]], %[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x2x3xf32>, tensor<9x8x7x1x2x3xf32>
-// CHECK: return %[[WRITE]] : tensor<9x8x7x1x2x3xf32>
-func.func @insert_static_slice_default_pad(%arg0: tensor<1x2x3xf32>, %arg1: tensor<9x8x7x1x2x3xf32>) -> tensor<9x8x7x1x2x3xf32> {
- %res = tensor.insert_slice %arg0 into %arg1[0, 0, 0, 0, 0, 0] [1, 1, 1, 1, 2, 3][1, 1, 1, 1, 1, 1] : tensor<1x2x3xf32> into tensor<9x8x7x1x2x3xf32>
- return %res : tensor<9x8x7x1x2x3xf32>
-}
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.insert_slice"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-// -----
-
-// Same as above, but there's a pad value available that should be used instead of the default value.
-
-// CHECK-LABEL: func.func @insert_static_slice_non_zero_pad
-// CHECK-SAME: %[[ARG_0:.*]]: tensor<1x2x3xf32>,
-// CHECK-SAME: %[[PAD:.*]]: f32) -> tensor<9x8x7x1x2x3xf32> {
-// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<9x8x7x1x2x3xf32>
-// CHECK: %[[BC:.*]] = vector.broadcast %[[PAD]] : f32 to vector<9x8x7x1x2x3xf32>
-// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[BC]], %[[EMPTY]]{{.*}} {in_bounds = [true, true, true, true, true, true]} : vector<9x8x7x1x2x3xf32>, tensor<9x8x7x1x2x3xf32>
-// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG_0]]{{.*}}, %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x2x3xf32>, vector<1x2x3xf32>
-// CHECK: %[[RES:.*]] = vector.transfer_write %[[READ]], %[[WRITE]]{{.*}} {in_bounds = [true, true, true]} : vector<1x2x3xf32>, tensor<9x8x7x1x2x3xf32>
-// CHECK: return %[[RES]] : tensor<9x8x7x1x2x3xf32>
-func.func @insert_static_slice_non_zero_pad(%arg0: tensor<1x2x3xf32>, %pad : f32) -> tensor<9x8x7x1x2x3xf32> {
- %init = tensor.empty() : tensor<9x8x7x1x2x3xf32>
- %fill = linalg.fill ins(%pad : f32) outs(%init : tensor<9x8x7x1x2x3xf32>) -> tensor<9x8x7x1x2x3xf32>
- %res = tensor.insert_slice %arg0 into %fill[0, 0, 0, 0, 0, 0] [1, 1, 1, 1, 2, 3][1, 1, 1, 1, 1, 1] : tensor<1x2x3xf32> into tensor<9x8x7x1x2x3xf32>
- return %res : tensor<9x8x7x1x2x3xf32>
-}
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.insert_slice"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-// -----
-
-// Same as above, but the source type has is dynamically shaped. This means
-// that the pad value is now required and the vector dim corresponding to the
-// dynamic shape has to be inferred from the shape of the destination tensor.
-
-// CHECK-LABEL: func.func @insert_dynamic_slice_non_zero_pad(
-// CHECK-SAME: %[[ARG_0:.*]]: tensor<1x?x3xf32>,
-// CHECK-SAME: %[[PAD:.*]]: f32,
-// CHECK-SAME: %[[SIZE:.*]]: index) -> tensor<9x8x7x1x2x3xf32> {
-// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<9x8x7x1x2x3xf32>
-// CHECK: %[[BC:.*]] = vector.broadcast %[[PAD]] : f32 to vector<9x8x7x1x2x3xf32>
-// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[BC]], %[[EMPTY]]{{.*}} {in_bounds = [true, true, true, true, true, true]} : vector<9x8x7x1x2x3xf32>, tensor<9x8x7x1x2x3xf32>
-// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG_0]]{{.*}}, %[[PAD]] {in_bounds = [true, false, true]} : tensor<1x?x3xf32>, vector<1x2x3xf32>
-// CHECK: %[[RES:.*]] = vector.transfer_write %[[READ]], %[[WRITE]]{{.*}} {in_bounds = [true, true, true]} : vector<1x2x3xf32>, tensor<9x8x7x1x2x3xf32>
-// CHECK: return %[[RES]] : tensor<9x8x7x1x2x3xf32>
-func.func @insert_dynamic_slice_non_zero_pad(%arg0: tensor<1x?x3xf32>, %pad : f32, %size: index) -> tensor<9x8x7x1x2x3xf32> {
- %init = tensor.empty() : tensor<9x8x7x1x2x3xf32>
- %fill = linalg.fill ins(%pad : f32) outs(%init : tensor<9x8x7x1x2x3xf32>) -> tensor<9x8x7x1x2x3xf32>
- %res = tensor.insert_slice %arg0 into %fill[0, 0, 0, 0, 0, 0] [1, 1, 1, 1, %size, 3][1, 1, 1, 1, 1, 1] : tensor<1x?x3xf32> into tensor<9x8x7x1x2x3xf32>
- return %res : tensor<9x8x7x1x2x3xf32>
-}
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.insert_slice"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
diff --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index 6b760a15afd56..8c6760fa50325 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -580,133 +580,6 @@ module attributes {transform.with_named_sequence} {
}
}
-// -----
-
-// CHECK-LABEL: func @test_masked_vectorize_pad
-func.func @test_masked_vectorize_pad(
- %0 : tensor<?x?xf32>, %h0 : index, %h1 : index)
- -> tensor<2x4xf32>
-{
- // CHECK-DAG: %[[c42:.*]] = arith.constant 4.243000e+01 : f32
- // CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
- // CHECK-DAG: %[[c0_0:.*]] = arith.constant 0 : index
- // CHECK: %[[d0:.*]] = tensor.dim {{.*}} : ...
[truncated]
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM. Moves files to specialized dir.
Thanks for organizing and also giving more appropriate names to the *.mlir .
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
What is the rule of this? Why other vectorization tests are not moved? Will you move them in the future?
I dont have issues of finding tests. I typically just clicked into a few files and search the ops. I'd be confused about where to find tests if you land the change. Because some of them are in Linalg/
and some of them are in Linalg/vectorization
. The other point is that I don't know which file I should use if I add a new support for vectorization.
(I think your rule may be moving all vectorization tests of non-linalg ops to |
This patch moves vectorization tests for
tensor.pad
andtensor.insert_slice
into dedicated files under a new subdirectory forthe vectorizer. The goal is to better organize the growing set of tests,
which are currently difficult to navigate.
This change is also a preparatory step for upcoming work: I’ll soon be
updating the vectorization logic for
tensor.pad
+tensor.insert_slice
. With the new structure in place, two things willbe clear in follow-up changes:
tensor.pad
andtensor.insert_slice
arebeing updated.
generation, only tests involving masking will be affected).