-
Notifications
You must be signed in to change notification settings - Fork 14.4k
[offload][SYCL] Add Module splitting by categories. #131347
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
ede5e8c
c764d7f
c69c62e
483933b
141c039
1729c50
0b6f17f
c249af1
7ad079e
7c96d33
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
//===-------- SplitModuleByCategory.h - module split ------------*- C++ -*-===// | ||
// | ||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://llvm.org/LICENSE.txt for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
// | ||
//===----------------------------------------------------------------------===// | ||
// Functionality to split a module by categories. | ||
//===----------------------------------------------------------------------===// | ||
|
||
#ifndef LLVM_TRANSFORM_UTILS_SPLIT_MODULE_BY_CATEGORY_H | ||
#define LLVM_TRANSFORM_UTILS_SPLIT_MODULE_BY_CATEGORY_H | ||
|
||
#include "llvm/ADT/STLFunctionalExtras.h" | ||
|
||
#include <memory> | ||
#include <optional> | ||
#include <string> | ||
|
||
namespace llvm { | ||
|
||
class Module; | ||
class Function; | ||
|
||
/// Splits the given module \p M into parts. Each output part is passed to | ||
/// \p Callback for further possible processing. Each part corresponds to a | ||
/// subset of the module that is transitively reachable from some entry point | ||
/// group. Each entry point group is defined by \p EntryPointCategorizer (EPC) | ||
/// as follows: 1) If the function is not an entry point, then the Categorizer | ||
/// returns std::nullopt. Therefore, the function doesn't belong to any group. | ||
/// However, the function and global objects can still be associated with some | ||
/// output parts if they are transitively used from some entry points. 2) If the | ||
/// function belongs to an entry point group, then EPC returns an integer which | ||
/// is an identifier of the group. If two entry points belong to one group, then | ||
/// EPC returns the same identifier for both of them. | ||
/// | ||
/// Let A and B be global objects in the module. The transitive dependency | ||
/// relation is defined such that: If global object A is used by global object B | ||
/// in any way (e.g., store, bitcast, phi node, call), then "A" -> "B". | ||
/// Transitivity is defined such that: If "A" -> "B" and "B" -> "C", then "A" -> | ||
/// "C". Examples of dependencies: | ||
/// - Function FA calls function FB | ||
/// - Function FA uses global variable GA | ||
/// - Global variable GA references (is initialized with) function FB | ||
/// - Function FA stores the address of function FB somewhere | ||
/// | ||
/// The following cases are treated as dependencies between global objects: | ||
/// 1. Global object A is used by global object B in any way (store, | ||
/// bitcast, phi node, call, etc.): an "A" -> "B" edge will be added to the | ||
/// graph; | ||
/// 2. Function A performs an indirect call of a function with signature S, and | ||
/// there is a function B with signature S. An "A" -> "B" edge will be added | ||
/// to the graph; | ||
/// | ||
/// FIXME: For now, the algorithm assumes no recursion in the input Module. This | ||
/// will be addressed in the near future. | ||
void splitModuleTransitiveFromEntryPoints( | ||
std::unique_ptr<Module> M, | ||
function_ref<std::optional<int>(const Function &F)> EntryPointCategorizer, | ||
function_ref<void(std::unique_ptr<Module> Part)> Callback); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It might be helpful to pass the category to the callback in addition to the module. But if this is not needed right now, we can do this later. |
||
|
||
} // namespace llvm | ||
|
||
#endif // LLVM_TRANSFORM_UTILS_SPLIT_MODULE_BY_CATEGORY_H |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,320 @@ | ||
//===-------- SplitModuleByCategory.cpp - split a module by categories ----===// | ||
// | ||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://llvm.org/LICENSE.txt for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
// | ||
//===----------------------------------------------------------------------===// | ||
// See comments in the header. | ||
//===----------------------------------------------------------------------===// | ||
|
||
#include "llvm/Transforms/Utils/SplitModuleByCategory.h" | ||
#include "llvm/ADT/SetVector.h" | ||
#include "llvm/ADT/SmallPtrSet.h" | ||
#include "llvm/ADT/StringExtras.h" | ||
#include "llvm/IR/Constants.h" | ||
#include "llvm/IR/Function.h" | ||
#include "llvm/IR/InstIterator.h" | ||
#include "llvm/IR/Instructions.h" | ||
#include "llvm/IR/Module.h" | ||
#include "llvm/Support/Debug.h" | ||
#include "llvm/Transforms/Utils/Cloning.h" | ||
|
||
#include <map> | ||
#include <string> | ||
#include <utility> | ||
|
||
using namespace llvm; | ||
|
||
#define DEBUG_TYPE "split-module-by-category" | ||
|
||
namespace { | ||
|
||
// A vector that contains a group of function with the same category. | ||
using EntryPointSet = SetVector<const Function *>; | ||
|
||
/// Represents a group of functions with one category. | ||
struct EntryPointGroup { | ||
int ID; | ||
EntryPointSet Functions; | ||
|
||
EntryPointGroup() = default; | ||
|
||
EntryPointGroup(int ID, EntryPointSet Functions = EntryPointSet()) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Doesn't this copy the set first before you move it below? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The value is supposed to be moved into the constructor's argument like the following: EntryPointGroup EPG(Key, std::move(EntryPoints)); In that case no copies occur. Probably, defining a constructor with r-value reference could be a right way here. Generally, I prefer the way that I use here since it matches how There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I would make it explicit, so r-value references. |
||
: ID(ID), Functions(std::move(Functions)) {} | ||
|
||
void clear() { Functions.clear(); } | ||
|
||
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | ||
LLVM_DUMP_METHOD void dump() const { | ||
constexpr size_t INDENT = 4; | ||
dbgs().indent(INDENT) << "ENTRY POINTS" | ||
<< " " << ID << " {\n"; | ||
for (const Function *F : Functions) | ||
dbgs().indent(INDENT) << " " << F->getName() << "\n"; | ||
|
||
dbgs().indent(INDENT) << "}\n"; | ||
} | ||
#endif | ||
}; | ||
|
||
/// Annotates an llvm::Module with information necessary to perform and track | ||
/// the result of code (llvm::Module instances) splitting: | ||
/// - entry points group from the module. | ||
class ModuleDesc { | ||
std::unique_ptr<Module> M; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I assume There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
EntryPointGroup EntryPoints; | ||
|
||
public: | ||
ModuleDesc(std::unique_ptr<Module> M, | ||
EntryPointGroup EntryPoints = EntryPointGroup()) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same as above? |
||
: M(std::move(M)), EntryPoints(std::move(EntryPoints)) { | ||
assert(this->M && "Module should be non-null"); | ||
} | ||
|
||
Module &getModule() { return *M; } | ||
const Module &getModule() const { return *M; } | ||
|
||
std::unique_ptr<Module> releaseModule() { | ||
EntryPoints.clear(); | ||
return std::move(M); | ||
} | ||
|
||
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | ||
LLVM_DUMP_METHOD void dump() const { | ||
dbgs() << "ModuleDesc[" << M->getName() << "] {\n"; | ||
EntryPoints.dump(); | ||
dbgs() << "}\n"; | ||
} | ||
#endif | ||
}; | ||
|
||
bool isKernel(const Function &F) { | ||
return F.getCallingConv() == CallingConv::SPIR_KERNEL || | ||
F.getCallingConv() == CallingConv::AMDGPU_KERNEL || | ||
F.getCallingConv() == CallingConv::PTX_Kernel; | ||
} | ||
|
||
// Represents "dependency" or "use" graph of global objects (functions and | ||
// global variables) in a module. It is used during code split to | ||
// understand which global variables and functions (other than entry points) | ||
// should be included into a split module. | ||
// | ||
// Nodes of the graph represent LLVM's GlobalObjects, edges "A" -> "B" represent | ||
// the fact that if "A" is included into a module, then "B" should be included | ||
// as well. | ||
// | ||
// Examples of dependencies which are represented in this graph: | ||
// - Function FA calls function FB | ||
// - Function FA uses global variable GA | ||
// - Global variable GA references (initialized with) function FB | ||
// - Function FA stores address of a function FB somewhere | ||
// | ||
// The following cases are treated as dependencies between global objects: | ||
// 1. Global object A is used within by a global object B in any way (store, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. "within by" There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could you please explain your point here? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I find the language weird, or the grammar broken. "used within by a global object" is not something I can parse. "used within a global object" works for me, "used by a global object" works as well. |
||
// bitcast, phi node, call, etc.): "A" -> "B" edge will be added to the | ||
// graph; | ||
// 2. function A performs an indirect call of a function with signature S and | ||
// there is a function B with signature S. "A" -> "B" edge will be added to | ||
// the graph; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is a slippery slope. I'm fine with it for now but in reality this doesn't work. We do allow, and execute, way more than perfect signature matches. |
||
class DependencyGraph { | ||
public: | ||
using GlobalSet = SmallPtrSet<const GlobalValue *, 16>; | ||
|
||
DependencyGraph(const Module &M) { | ||
// Group functions by their signature to handle case (2) described above | ||
DenseMap<const FunctionType *, DependencyGraph::GlobalSet> | ||
FuncTypeToFuncsMap; | ||
for (const Function &F : M.functions()) { | ||
// Kernels can't be called (either directly or indirectly). | ||
if (isKernel(F)) | ||
continue; | ||
|
||
FuncTypeToFuncsMap[F.getFunctionType()].insert(&F); | ||
} | ||
|
||
for (const Function &F : M.functions()) { | ||
// case (1), see comment above the class definition | ||
for (const Value *U : F.users()) | ||
addUserToGraphRecursively(cast<const User>(U), &F); | ||
|
||
// case (2), see comment above the class definition | ||
for (const Instruction &I : instructions(F)) { | ||
const CallBase *CB = dyn_cast<CallBase>(&I); | ||
if (!CB || !CB->isIndirectCall()) // Direct calls were handled above | ||
continue; | ||
|
||
const FunctionType *Signature = CB->getFunctionType(); | ||
GlobalSet &PotentialCallees = FuncTypeToFuncsMap[Signature]; | ||
Graph.emplace_or_assign(&F, std::move(PotentialCallees)); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. You move the PotentialCallees here. Doesn't that invalidate the container in FuncTypeToFuncsMap? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Generally, containers being There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. So https://en.cppreference.com/w/cpp/utility/move.html states:
Which means after you moved the first time, the state is "valid" but the content is likely gone. And, just to make the point stronger, the your moving a GlobalSet which isn't a std:: container. Looking at (https://github.com/llvm/llvm-project/blob/main/llvm/lib/Support/SmallPtrSet.cpp#L211) I would assume another use of There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. For sure, we can test this with indirect calls in two kernels that have the same signature and a callee that should be copied twice. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @maksimsab, this one is actually important to verify. |
||
} | ||
} | ||
|
||
// And every global variable (but their handling is a bit simpler) | ||
for (const GlobalVariable &GV : M.globals()) | ||
for (const Value *U : GV.users()) | ||
addUserToGraphRecursively(cast<const User>(U), &GV); | ||
} | ||
|
||
iterator_range<GlobalSet::const_iterator> | ||
dependencies(const GlobalValue *Val) const { | ||
auto It = Graph.find(Val); | ||
return (It == Graph.end()) | ||
? make_range(EmptySet.begin(), EmptySet.end()) | ||
: make_range(It->second.begin(), It->second.end()); | ||
} | ||
|
||
private: | ||
void addUserToGraphRecursively(const User *Root, const GlobalValue *V) { | ||
SmallVector<const User *, 8> WorkList; | ||
WorkList.push_back(Root); | ||
|
||
while (!WorkList.empty()) { | ||
const User *U = WorkList.pop_back_val(); | ||
if (const auto *I = dyn_cast<const Instruction>(U)) { | ||
const Function *UFunc = I->getFunction(); | ||
Graph[UFunc].insert(V); | ||
} else if (isa<const Constant>(U)) { | ||
if (const auto *GV = dyn_cast<const GlobalVariable>(U)) | ||
Graph[GV].insert(V); | ||
// This could be a global variable or some constant expression (like | ||
// bitcast or gep). We trace users of this constant further to reach | ||
// global objects they are used by and add them to the graph. | ||
for (const User *UU : U->users()) | ||
WorkList.push_back(UU); | ||
} else { | ||
llvm_unreachable("Unhandled type of function user"); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This should trigger on metadata, doesn't it? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. From the inheritance hierarchy [1] it doesn't look like we can get a metadata from |
||
} | ||
} | ||
} | ||
|
||
DenseMap<const GlobalValue *, GlobalSet> Graph; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nit: this There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. That would require me to use void addUserToGraphRecursively(const User *Root, const GlobalValue *V) {
SmallVector<User *, 8> WorkList;
WorkList.push_back(const_cast<User *>(Root));
/// ...
} Would that be ok in LLVM style? |
||
SmallPtrSet<const GlobalValue *, 1> EmptySet; | ||
}; | ||
|
||
void collectFunctionsAndGlobalVariablesToExtract( | ||
SetVector<const GlobalValue *> &GVs, const Module &M, | ||
const EntryPointGroup &ModuleEntryPoints, const DependencyGraph &DG) { | ||
// We start with module entry points | ||
for (const Function *F : ModuleEntryPoints.Functions) | ||
GVs.insert(F); | ||
|
||
// Non-discardable global variables are also include into the initial set | ||
for (const GlobalVariable &GV : M.globals()) | ||
if (!GV.isDiscardableIfUnused()) | ||
GVs.insert(&GV); | ||
|
||
// GVs has SetVector type. This type inserts a value only if it is not yet | ||
// present there. So, recursion is not expected here. | ||
size_t Idx = 0; | ||
while (Idx < GVs.size()) { | ||
const GlobalValue *Obj = GVs[Idx++]; | ||
|
||
for (const GlobalValue *Dep : DG.dependencies(Obj)) { | ||
if (const auto *Func = dyn_cast<const Function>(Dep)) { | ||
if (!Func->isDeclaration()) | ||
GVs.insert(Func); | ||
} else { | ||
GVs.insert(Dep); // Global variables are added unconditionally | ||
} | ||
} | ||
} | ||
} | ||
|
||
ModuleDesc extractSubModule(const Module &M, | ||
const SetVector<const GlobalValue *> &GVs, | ||
EntryPointGroup ModuleEntryPoints) { | ||
ValueToValueMapTy VMap; | ||
// Clone definitions only for needed globals. Others will be added as | ||
// declarations and removed later. | ||
std::unique_ptr<Module> SubM = CloneModule( | ||
M, VMap, [&](const GlobalValue *GV) { return GVs.contains(GV); }); | ||
// Replace entry points with cloned ones. | ||
EntryPointSet NewEPs; | ||
const EntryPointSet &EPs = ModuleEntryPoints.Functions; | ||
llvm::for_each( | ||
EPs, [&](const Function *F) { NewEPs.insert(cast<Function>(VMap[F])); }); | ||
ModuleEntryPoints.Functions = std::move(NewEPs); | ||
return ModuleDesc{std::move(SubM), std::move(ModuleEntryPoints)}; | ||
} | ||
|
||
// The function produces a copy of input LLVM IR module M with only those | ||
// functions and globals that can be called from entry points that are specified | ||
// in ModuleEntryPoints vector, in addition to the entry point functions. | ||
ModuleDesc extractCallGraph(const Module &M, EntryPointGroup ModuleEntryPoints, | ||
const DependencyGraph &DG) { | ||
SetVector<const GlobalValue *> GVs; | ||
collectFunctionsAndGlobalVariablesToExtract(GVs, M, ModuleEntryPoints, DG); | ||
|
||
ModuleDesc SplitM = extractSubModule(M, GVs, std::move(ModuleEntryPoints)); | ||
LLVM_DEBUG(SplitM.dump()); | ||
return SplitM; | ||
} | ||
|
||
using EntryPointGroupVec = SmallVector<EntryPointGroup>; | ||
|
||
/// Module Splitter. | ||
/// It gets a module and a collection of entry points groups. | ||
/// Each group specifies subset entry points from input module that should be | ||
/// included in a split module. | ||
class ModuleSplitter { | ||
private: | ||
std::unique_ptr<Module> M; | ||
EntryPointGroupVec Groups; | ||
DependencyGraph DG; | ||
|
||
private: | ||
EntryPointGroup drawEntryPointGroup() { | ||
assert(Groups.size() > 0 && "Reached end of entry point groups list."); | ||
EntryPointGroup Group = std::move(Groups.back()); | ||
Groups.pop_back(); | ||
return Group; | ||
} | ||
|
||
public: | ||
ModuleSplitter(std::unique_ptr<Module> Module, EntryPointGroupVec GroupVec) | ||
: M(std::move(Module)), Groups(std::move(GroupVec)), DG(*M) { | ||
assert(!Groups.empty() && "Entry points groups collection is empty!"); | ||
} | ||
|
||
/// Gets next subsequence of entry points in an input module and provides | ||
/// split submodule containing these entry points and their dependencies. | ||
ModuleDesc getNextSplit() { | ||
return extractCallGraph(*M, drawEntryPointGroup(), DG); | ||
} | ||
|
||
/// Check that there are still submodules to split. | ||
bool hasMoreSplits() const { return Groups.size() > 0; } | ||
}; | ||
|
||
EntryPointGroupVec selectEntryPointGroups( | ||
const Module &M, function_ref<std::optional<int>(const Function &F)> EPC) { | ||
// std::map is used here to ensure stable ordering of entry point groups, | ||
// which is based on their contents, this greatly helps LIT tests | ||
std::map<int, EntryPointSet> EntryPointsMap; | ||
|
||
for (const auto &F : M.functions()) | ||
if (std::optional<int> Category = EPC(F); Category) | ||
EntryPointsMap[*Category].insert(&F); | ||
|
||
EntryPointGroupVec Groups; | ||
Groups.reserve(EntryPointsMap.size()); | ||
for (auto &[Key, EntryPoints] : EntryPointsMap) | ||
Groups.emplace_back(Key, std::move(EntryPoints)); | ||
|
||
return Groups; | ||
} | ||
|
||
} // namespace | ||
|
||
void llvm::splitModuleTransitiveFromEntryPoints( | ||
std::unique_ptr<Module> M, | ||
function_ref<std::optional<int>(const Function &F)> EntryPointCategorizer, | ||
function_ref<void(std::unique_ptr<Module> Part)> Callback) { | ||
EntryPointGroupVec Groups = selectEntryPointGroups(*M, EntryPointCategorizer); | ||
ModuleSplitter Splitter(std::move(M), std::move(Groups)); | ||
while (Splitter.hasMoreSplits()) { | ||
ModuleDesc MD = Splitter.getNextSplit(); | ||
Callback(std::move(MD.releaseModule())); | ||
} | ||
} |
Uh oh!
There was an error while loading. Please reload this page.