Skip to content

[mlir][bufferization]-Replace only one use in TensorEmptyElimination #118958

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -459,7 +459,8 @@ class AnalysisState {
/// Starting from `value`, follow the use-def chain in reverse, always
/// selecting the aliasing OpOperands. Find and return Values for which
/// `condition` evaluates to true. OpOperands of such matching Values are not
/// traversed any further.
/// traversed any further, the visited aliasing opOperands will be preserved
/// through `visitedOpOperands`.
///
/// When reaching the end of a chain, also return the last Value of that
/// chain if `config.alwaysIncludeLeaves` is set.
Expand All @@ -484,7 +485,8 @@ class AnalysisState {
/// `config`.
SetVector<Value> findValueInReverseUseDefChain(
Value value, llvm::function_ref<bool(Value)> condition,
TraversalConfig config = TraversalConfig()) const;
TraversalConfig config = TraversalConfig(),
llvm::DenseSet<OpOperand *> *visitedOpOperands = nullptr) const;

/// Find the values that may define the contents of the given value at
/// runtime. A block argument is always a definition. An OpResult is a
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -483,10 +483,12 @@ bool AnalysisState::isValueRead(Value value) const {
// Starting from `value`, follow the use-def chain in reverse, always selecting
// the aliasing OpOperands. Find and return Values for which `condition`
// evaluates to true. OpOperands of such matching Values are not traversed any
// further.
// further, the visited aliasing opOperands will be preserved through
// `visitedOpOperands`.
llvm::SetVector<Value> AnalysisState::findValueInReverseUseDefChain(
Value value, llvm::function_ref<bool(Value)> condition,
TraversalConfig config) const {
TraversalConfig config,
llvm::DenseSet<OpOperand *> *visitedOpOperands) const {
llvm::DenseSet<Value> visited;
llvm::SetVector<Value> result, workingSet;
workingSet.insert(value);
Expand Down Expand Up @@ -553,6 +555,8 @@ llvm::SetVector<Value> AnalysisState::findValueInReverseUseDefChain(
}

workingSet.insert(a.opOperand->get());
if (visitedOpOperands)
visitedOpOperands->insert(a.opOperand);
}
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -48,27 +48,20 @@ neededValuesDominateInsertionPoint(const DominanceInfo &domInfo,
return true;
}

/// Return true if the given `insertionPoint` dominates all uses of
/// `emptyTensorOp`.
static bool insertionPointDominatesUses(const DominanceInfo &domInfo,
Operation *insertionPoint,
Operation *emptyTensorOp) {
return llvm::all_of(emptyTensorOp->getUsers(), [&](Operation *user) {
return domInfo.dominates(insertionPoint, user);
});
}

/// Find a valid insertion point for a replacement of `emptyTensorOp`, assuming
/// that the replacement may use any value from `neededValues`.
/// Find a valid insertion point for a replacement of `emptyTensorOp`'s
/// use of `user` operation, assuming that the replacement may use any
/// value from `neededValues`.
static Operation *
findValidInsertionPoint(Operation *emptyTensorOp,
findValidInsertionPoint(Operation *emptyTensorOp, Operation *user,
const SmallVector<Value> &neededValues) {
DominanceInfo domInfo;
Operation *candidateInsertionPoint = emptyTensorOp;

// Gather all possible insertion points: the location of `emptyTensorOp` and
// right after the definition of each value in `neededValues`.
// Gather all possible insertion points: the location of
// `candidateInsertionPoint` and right after the definition of each value in
// `neededValues`.
SmallVector<Operation *> insertionPointCandidates;
insertionPointCandidates.push_back(emptyTensorOp);
insertionPointCandidates.push_back(candidateInsertionPoint);
for (Value val : neededValues) {
// Note: The anchor op is using all of `neededValues`, so:
// * in case of a block argument: There must be at least one op in the block
Expand All @@ -90,8 +83,8 @@ findValidInsertionPoint(Operation *emptyTensorOp,
if (!neededValuesDominateInsertionPoint(domInfo, insertionPoint,
neededValues))
continue;
// Check if the insertion point is before all uses.
if (!insertionPointDominatesUses(domInfo, insertionPoint, emptyTensorOp))
// Check if the insertion point is before the use to be replaced.
if (!domInfo.dominates(insertionPoint, user))
continue;
return insertionPoint;
}
Expand All @@ -103,8 +96,9 @@ findValidInsertionPoint(Operation *emptyTensorOp,
LogicalResult mlir::bufferization::eliminateEmptyTensors(
RewriterBase &rewriter, Operation *op, OneShotAnalysisState &state) {
OpBuilder::InsertionGuard g(rewriter);

llvm::DenseSet<OpOperand *> visitedOpOperands;
op->walk([&](SubsetInsertionOpInterface op) {
visitedOpOperands.clear();
OpOperand &source = op.getSourceOperand();
// Skip operands that do not bufferize inplace. "tensor.empty" could still
// be replaced, but the transformation may not be beneficial.
Expand All @@ -131,16 +125,28 @@ LogicalResult mlir::bufferization::eliminateEmptyTensors(
config.followSameTypeOrCastsOnly = true;
SetVector<Value> emptyTensors = state.findValueInReverseUseDefChain(
source.get(), /*condition=*/
[&](Value val) { return val.getDefiningOp<tensor::EmptyOp>(); },
config);
[&](Value val) { return val.getDefiningOp<tensor::EmptyOp>(); }, config,
&visitedOpOperands);

for (Value v : emptyTensors) {
Operation *emptyTensorOp = v.getDefiningOp();

// Find the use to be replaced from the use-def chain.
auto iter = llvm::find_if(
visitedOpOperands, [&emptyTensorOp](OpOperand *opOperand) {
return llvm::count(emptyTensorOp->getUses(), *opOperand);
});
// This could be achieved when a use of `emptyTensorOp` is being
// consumed by `SubsetInsertionOpInterface`'s source directly.
if (iter == visitedOpOperands.end())
continue;
OpOperand *useToBeReplaced = *iter;
Operation *user = useToBeReplaced->getOwner();

// Find a suitable insertion point. If no suitable insertion point for
// the replacement can be found, skip this replacement.
Operation *insertionPoint =
findValidInsertionPoint(emptyTensorOp, neededValues);
findValidInsertionPoint(emptyTensorOp, user, neededValues);
if (!insertionPoint)
continue;

Expand All @@ -159,8 +165,10 @@ LogicalResult mlir::bufferization::eliminateEmptyTensors(
replacement = rewriter.create<tensor::CastOp>(v.getLoc(), v.getType(),
replacement);
}
// Replace the tensor::EmptyOp.
rewriter.replaceOp(emptyTensorOp, replacement);
// Replace the specific use of the tensor::EmptyOp.
rewriter.modifyOpInPlace(user, [&]() {
user->setOperand(useToBeReplaced->getOperandNumber(), replacement);
});
state.resetCache();
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,7 @@ func.func @buffer_forwarding_conflict_with_different_element_type(%arg0: tensor<
// CHECK: tensor.extract_slice
// CHECK-SAME: {__inplace_operands_attr__ = ["true", "none"]
%cst = arith.constant 0.000000e+00 : f32
// CHECK: bufferization.alloc_tensor(%arg1)
%0 = tensor.empty(%arg1) : tensor<?xf32>

// CHECK: bufferization.alloc_tensor(%arg1)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -365,3 +365,103 @@ func.func @multiple_materialize_in_destination_buffer(%m: memref<5xf32>, %f: f32
bufferization.materialize_in_destination %selected in restrict writable %m : (tensor<5xf32>, memref<5xf32>) -> ()
return
}

// -----

// `EmptyTensorElimination` fails to find a valid insertion
// point for the new injected `SubsetExtraction`.
// CHECK-LABEL: func.func @fail_to_eliminate_any_empty_tensors
func.func @fail_to_eliminate_any_empty_tensors() -> tensor<5x6x128xf32> {
%cst_1 = arith.constant 1.0 : f32
%cst_2 = arith.constant 2.0 : f32
// CHECK: memref.alloc
// CHECK: memref.alloc
// CHECK: memref.alloc
%empty_1 = tensor.empty() : tensor<5x6x64xf32>
%res_1 = linalg.fill ins(%cst_1 : f32) outs(%empty_1 : tensor<5x6x64xf32>) -> tensor<5x6x64xf32>
%empty_2 = tensor.empty() : tensor<5x6x64xf32>
%res_2 = linalg.fill ins(%cst_2 : f32) outs(%empty_2 : tensor<5x6x64xf32>) -> tensor<5x6x64xf32>
%cancatenated_empty = tensor.empty() : tensor<5x6x128xf32>
// CHECK: memref.copy
%inserted_slice_1 = tensor.insert_slice %res_1 into %cancatenated_empty[0, 0, 0][5, 6, 64][1, 1, 1]
: tensor<5x6x64xf32> into tensor<5x6x128xf32>
%inserted_slice_2 = tensor.insert_slice %res_2 into %inserted_slice_1[0, 0, 64][5, 6, 64][1, 1, 1]
: tensor<5x6x64xf32> into tensor<5x6x128xf32>
return %inserted_slice_2 : tensor<5x6x128xf32>
}

// -----

// CHECK-LABEL: func.func @succeed_to_eliminate_one_empty_tensor
func.func @succeed_to_eliminate_one_empty_tensor() -> tensor<5x6x128xf32> {
%cst_1 = arith.constant 1.0 : f32
%cst_2 = arith.constant 2.0 : f32
// CHECK: memref.alloc() {alignment = 64 : i64} : memref<5x6x128xf32>
// CHECK: memref.alloc
// CHECK-NOT: memref.alloc
%cancatenated_empty = tensor.empty() : tensor<5x6x128xf32>
%empty_1 = tensor.empty() : tensor<5x6x64xf32>
%res_1 = linalg.fill ins(%cst_1 : f32) outs(%empty_1 : tensor<5x6x64xf32>) -> tensor<5x6x64xf32>
%empty_2 = tensor.empty() : tensor<5x6x64xf32>
%res_2 = linalg.fill ins(%cst_2 : f32) outs(%empty_2 : tensor<5x6x64xf32>) -> tensor<5x6x64xf32>
// CHECK: memref.copy
%inserted_slice_1 = tensor.insert_slice %res_1 into %cancatenated_empty[0, 0, 0][5, 6, 64][1, 1, 1]
: tensor<5x6x64xf32> into tensor<5x6x128xf32>
%inserted_slice_2 = tensor.insert_slice %res_2 into %inserted_slice_1[0, 0, 64][5, 6, 64][1, 1, 1]
: tensor<5x6x64xf32> into tensor<5x6x128xf32>
return %inserted_slice_2 : tensor<5x6x128xf32>
}

// -----

// `EmptyTensorElimination` will replace the specific use of the tensor
// empty with the new injected `SubsetExtraction`, i.e. the specific use
// which has been tracked.

// CHECK-ELIM-LABEL: func.func @mutli_use_of_the_same_tensor_empty
// CHECK-LABEL: func.func @mutli_use_of_the_same_tensor_empty
func.func @mutli_use_of_the_same_tensor_empty() -> tensor<5x6x128xf32> {
%cst_1 = arith.constant 1.0 : f32
%cst_2 = arith.constant 2.0 : f32
%cancatenated_empty = tensor.empty() : tensor<5x6x128xf32>
%empty_1 = tensor.empty() : tensor<5x6x64xf32>
// CHECK-ELIM: %[[VAL_3:.*]] = tensor.extract_slice
// CHECK-ELIM: linalg.fill ins(%[[VAL_0:.*]] : f32) outs(%[[VAL_3]]
// CHECK-ELIM-NOT: linalg.fill ins(%[[VAL_1:.*]] : f32) outs(%[[VAL_3]]
%res_1 = linalg.fill ins(%cst_1 : f32) outs(%empty_1 : tensor<5x6x64xf32>) -> tensor<5x6x64xf32>
%res_2 = linalg.fill ins(%cst_2 : f32) outs(%empty_1 : tensor<5x6x64xf32>) -> tensor<5x6x64xf32>
// CHECK: memref.copy
%inserted_slice_1 = tensor.insert_slice %res_1 into %cancatenated_empty[0, 0, 0][5, 6, 64][1, 1, 1]
: tensor<5x6x64xf32> into tensor<5x6x128xf32>
// CHECK-NOT: memref.copy
%inserted_slice_2 = tensor.insert_slice %res_2 into %inserted_slice_1[0, 0, 64][5, 6, 64][1, 1, 1]
: tensor<5x6x64xf32> into tensor<5x6x128xf32>
return %inserted_slice_2 : tensor<5x6x128xf32>
}

// -----

// CHECK-LABEL: func.func @mutli_use_of_the_same_tensor_empty_creates_non_existent_read
// CHECK-ELIM-LABEL: func.func @mutli_use_of_the_same_tensor_empty_creates_non_existent_read
func.func @mutli_use_of_the_same_tensor_empty_creates_non_existent_read(%arg1: tensor<5x6x128xf32> , %arg2: tensor<5x6x64xf32>)
-> (tensor<5x6x128xf32>, tensor<5x6x64xf32>) {
%cst_1 = arith.constant 1.0 : f32
%empty_1 = tensor.empty() : tensor<5x6x64xf32>
// CHECK: memref.alloc() {alignment = 64 : i64} : memref<5x6x64xf32>
// CHECK-NOT: memref.alloc
%res_1 = linalg.fill ins(%cst_1 : f32) outs(%empty_1 : tensor<5x6x64xf32>) -> tensor<5x6x64xf32>
%res_2 = linalg.generic{
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>],
iterator_types = ["parallel", "parallel", "parallel"]
}
ins(%empty_1 : tensor<5x6x64xf32>)
outs(%arg2 :tensor<5x6x64xf32>) {
^bb0(%in: f32, %out: f32):
%res = arith.addf %in, %in : f32
linalg.yield %res : f32
} -> tensor<5x6x64xf32>
// CHECK-NOT: memref.copy
%inserted_slice_1 = tensor.insert_slice %res_1 into %arg1[0, 0, 0][5, 6, 64][1, 1, 1]
: tensor<5x6x64xf32> into tensor<5x6x128xf32>
return %inserted_slice_1, %res_2 : tensor<5x6x128xf32>, tensor<5x6x64xf32>
}
Loading