Skip to content

Commit

Permalink
[mlir][sparse] test optimization of binary-valued operations (#90986)
Browse files Browse the repository at this point in the history
Make sure consumer-producer fusion happens (to avoid the temporary dense
tensor) and constant folding occurs in the generated code.
  • Loading branch information
aartbik authored May 3, 2024
1 parent dce13b4 commit fc398a1
Showing 1 changed file with 145 additions and 0 deletions.
145 changes: 145 additions & 0 deletions mlir/test/Dialect/SparseTensor/binary_valued.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
// RUN: mlir-opt %s --linalg-fuse-elementwise-ops \
// RUN: --sparsification-and-bufferization | FileCheck %s

#Sparse = #sparse_tensor.encoding<{
map = (d0, d1, d2) -> (d0 : dense, d1 : dense, d2 : compressed),
explicitVal = 1.0 : f32
}>

#trait3p = {
indexing_maps = [
affine_map<(i,j,k) -> (i,j,k)>, // A
affine_map<(i,j,k) -> (i,j,k)>, // B
affine_map<(i,j,k) -> (i,j,k)> // X (out)
],
iterator_types = ["parallel", "parallel", "parallel"]
}

#trait3r = {
indexing_maps = [
affine_map<(i,j,k) -> (i,j,k)>, // A
affine_map<(i,j,k) -> ()> // X (out)
],
iterator_types = ["reduction", "reduction", "reduction"]
}

//
// Make sure X += A * A => X += 1 in single loop.
//
//
// CHECK-LABEL: func.func @sum_squares(
// CHECK-SAME: %[[VAL_0:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[VAL_1:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[VAL_2:.*2]]: memref<?xf32>,
// CHECK-SAME: %[[VAL_3:.*3]]: !sparse_tensor.storage_specifier<#{{.*}}>) -> memref<f32> {
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1.000000e+00 : f32
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_7:.*]] = arith.constant 3 : index
// CHECK-DAG: %[[VAL_8:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_10:.*]] = memref.alloc() {alignment = 64 : i64} : memref<f32>
// CHECK: linalg.fill ins(%[[VAL_9]] : f32) outs(%[[VAL_10]] : memref<f32>)
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_10]][] : memref<f32>
// CHECK: %[[VAL_12:.*]] = scf.for %[[VAL_13:.*]] = %[[VAL_6]] to %[[VAL_8]] step %[[VAL_5]] iter_args(%[[VAL_14:.*]] = %[[VAL_11]]) -> (f32) {
// CHECK: %[[VAL_15:.*]] = arith.muli %[[VAL_13]], %[[VAL_7]] : index
// CHECK: %[[VAL_16:.*]] = scf.for %[[VAL_17:.*]] = %[[VAL_6]] to %[[VAL_7]] step %[[VAL_5]] iter_args(%[[VAL_18:.*]] = %[[VAL_14]]) -> (f32) {
// CHECK: %[[VAL_19:.*]] = arith.addi %[[VAL_17]], %[[VAL_15]] : index
// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_0]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK: %[[VAL_21:.*]] = arith.addi %[[VAL_19]], %[[VAL_5]] : index
// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_0]]{{\[}}%[[VAL_21]]] : memref<?xindex>
// CHECK: %[[VAL_23:.*]] = scf.for %[[VAL_24:.*]] = %[[VAL_20]] to %[[VAL_22]] step %[[VAL_5]] iter_args(%[[VAL_25:.*]] = %[[VAL_18]]) -> (f32) {
// CHECK: %[[VAL_26:.*]] = arith.addf %[[VAL_25]], %[[VAL_4]] : f32
// CHECK: scf.yield %[[VAL_26]] : f32
// CHECK: } {"Emitted from" = "linalg.generic"}
// CHECK: scf.yield %[[VAL_23]] : f32
// CHECK: } {"Emitted from" = "linalg.generic"}
// CHECK: scf.yield %[[VAL_16]] : f32
// CHECK: } {"Emitted from" = "linalg.generic"}
// CHECK: memref.store %[[VAL_12]], %[[VAL_10]][] : memref<f32>
// CHECK: return %[[VAL_10]] : memref<f32>
// CHECK: }
//
func.func @sum_squares(%a: tensor<2x3x8xf32, #Sparse>) -> tensor<f32> {
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<2x3x8xf32>
%1 = linalg.generic #trait3p
ins(%a, %a : tensor<2x3x8xf32, #Sparse>, tensor<2x3x8xf32, #Sparse>)
outs(%0 : tensor<2x3x8xf32>) {
^bb0(%in1: f32, %in2: f32, %out: f32):
%mul = arith.mulf %in1, %in2 : f32
linalg.yield %mul : f32
} -> tensor<2x3x8xf32>
%2 = tensor.empty() : tensor<f32>
%3 = linalg.fill ins(%cst : f32) outs(%2 : tensor<f32>) -> tensor<f32>
%4 = linalg.generic #trait3r
ins(%1 : tensor<2x3x8xf32>)
outs(%3 : tensor<f32>) {
^bb0(%in: f32, %out: f32):
%add = arith.addf %in, %out : f32
linalg.yield %add : f32
} -> tensor<f32>

return %4 : tensor<f32>
}

//
// Make sure X += A * B => X += B in single loop.
//
// CHECK-LABEL: func.func @sum_products(
// CHECK-SAME: %[[VAL_0:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[VAL_1:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[VAL_2:.*2]]: memref<?xf32>,
// CHECK-SAME: %[[VAL_3:.*3]]: !sparse_tensor.storage_specifier<#{{.*}}>,
// CHECK-SAME: %[[VAL_4:.*4]]: memref<2x3x8xf32>) -> memref<f32> {
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_7:.*]] = arith.constant 3 : index
// CHECK-DAG: %[[VAL_8:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_10:.*]] = memref.alloc() {alignment = 64 : i64} : memref<f32>
// CHECK: linalg.fill ins(%[[VAL_9]] : f32) outs(%[[VAL_10]] : memref<f32>)
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_10]][] : memref<f32>
// CHECK: %[[VAL_12:.*]] = scf.for %[[VAL_13:.*]] = %[[VAL_6]] to %[[VAL_8]] step %[[VAL_5]] iter_args(%[[VAL_14:.*]] = %[[VAL_11]]) -> (f32) {
// CHECK: %[[VAL_15:.*]] = arith.muli %[[VAL_13]], %[[VAL_7]] : index
// CHECK: %[[VAL_16:.*]] = scf.for %[[VAL_17:.*]] = %[[VAL_6]] to %[[VAL_7]] step %[[VAL_5]] iter_args(%[[VAL_18:.*]] = %[[VAL_14]]) -> (f32) {
// CHECK: %[[VAL_19:.*]] = arith.addi %[[VAL_17]], %[[VAL_15]] : index
// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_0]]{{\[}}%[[VAL_19]]] : memref<?xindex>
// CHECK: %[[VAL_21:.*]] = arith.addi %[[VAL_19]], %[[VAL_5]] : index
// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_0]]{{\[}}%[[VAL_21]]] : memref<?xindex>
// CHECK: %[[VAL_23:.*]] = scf.for %[[VAL_24:.*]] = %[[VAL_20]] to %[[VAL_22]] step %[[VAL_5]] iter_args(%[[VAL_25:.*]] = %[[VAL_18]]) -> (f32) {
// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_1]]{{\[}}%[[VAL_24]]] : memref<?xindex>
// CHECK: %[[VAL_27:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_13]], %[[VAL_17]], %[[VAL_26]]] : memref<2x3x8xf32>
// CHECK: %[[VAL_28:.*]] = arith.addf %[[VAL_27]], %[[VAL_25]] : f32
// CHECK: scf.yield %[[VAL_28]] : f32
// CHECK: } {"Emitted from" = "linalg.generic"}
// CHECK: scf.yield %[[VAL_23]] : f32
// CHECK: } {"Emitted from" = "linalg.generic"}
// CHECK: scf.yield %[[VAL_16]] : f32
// CHECK: } {"Emitted from" = "linalg.generic"}
// CHECK: memref.store %[[VAL_12]], %[[VAL_10]][] : memref<f32>
// CHECK: return %[[VAL_10]] : memref<f32>
// CHECK: }
//
func.func @sum_products(%a: tensor<2x3x8xf32, #Sparse>, %b: tensor<2x3x8xf32>) -> tensor<f32> {
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<2x3x8xf32>
%1 = linalg.generic #trait3p
ins(%a, %b : tensor<2x3x8xf32, #Sparse>, tensor<2x3x8xf32>)
outs(%0 : tensor<2x3x8xf32>) {
^bb0(%in1: f32, %in2: f32, %out: f32):
%mul = arith.mulf %in1, %in2 : f32
linalg.yield %mul : f32
} -> tensor<2x3x8xf32>
%2 = tensor.empty() : tensor<f32>
%3 = linalg.fill ins(%cst : f32) outs(%2 : tensor<f32>) -> tensor<f32>
%4 = linalg.generic #trait3r
ins(%1 : tensor<2x3x8xf32>)
outs(%3 : tensor<f32>) {
^bb0(%in: f32, %out: f32):
%add = arith.addf %in, %out : f32
linalg.yield %add : f32
} -> tensor<f32>

return %4 : tensor<f32>
}

0 comments on commit fc398a1

Please sign in to comment.