Skip to content

llm-platform-security/ai-agent-permissions

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Towards Automating Data Access Permissions in AI Agents

IEEE S&P 2026 arXiv License: CC BY 4.0

Overview

This repository contains the data, source code, and materials for our research on automating data access permissions in AI agents. We take a multifaceted approach: (i) conducting a vignette-based user study to understand user permission preferences, and (ii) developing a permission prediction system that combines LLM in-context learning with collaborative filtering.

Key Contributions

  1. Automated Permission Framework: We propose automating data access permissions in AI agents through a permission assistant that observes user history and makes automatic decisions.

  2. Vignette-Based User Study: We develop a bespoke vignette-based user study to understand factors influencing users' data-sharing permission decisions in AI agents.

  3. Hybrid Permission Inference System: We develop a hybrid permission inference framework combining in-context learning and collaborative filtering to predict user preferences.

Repository Structure

ai-agent-permissions/
├── data/                       # User study data and documentation
│   ├── README.md               # Data documentation
│   ├── data_types.csv          # Data types catalog (77 data types)
│   ├── user_study.json         # Anonymized user responses (203 participants)
│   └── processed_dataset.json  # Processed dataset (181 filtered participants)
├── src/                        # Source code implementing three experimental approaches
│   ├── README.md               # Source code documentation
│   ├── permission_cf_only.py   # CF only: LightGCN collaborative filtering
│   ├── permission_ic_only.py   # IC only: In-context learning baseline
│   ├── permission_ic_cf.py     # IC+CF: Hybrid approach (main contribution)
│   └── evaluation_utils.py     # Shared evaluation utilities
├── results/                    # Output directory for all experimental results
│   └── README.md               # Output files documentation
├── queries.json                # 65 study scenarios with ground truth
├── website.pdf                 # User study website screenshots
├── requirements.txt            # Python dependencies
├── LICENSE                     # CC BY 4.0 license
└── README.md                   # This file

Quick Start

Prerequisites

  • Python 3.9+
  • OpenAI API key (for IC-only and IC+CF methods)

Installation

# Clone the repository
git clone https://github.com/llm-platform-security/ai-agent-permissions.git
cd ai-agent-permissions

# Create virtual environment (recommended)
python3 -m venv venv
source venv/bin/activate

# Install dependencies
pip install -r requirements.txt

Environment Setup

Create .env file from template and configure your API key:

cp .env.example .env

Edit .env and add your OpenAI API key:

# Required for IC-only and IC+CF methods
OPENAI_API_KEY=your-api-key-here

# Optional: Configure model (defaults to o4-mini)
OPENAI_MODEL=o4-mini              # Default (more advanced)
# OPENAI_MODEL=o3-mini-2025-01-31  # Used in the paper

Running the Code

The source code implements the three experimental approaches. All outputs are saved to results/ directory.

cd src

# 1. CF only: Collaborative filtering with LightGCN (no API key required)
python permission_cf_only.py

# 2. IC only: In-context learning without collaborative filtering
python permission_ic_only.py

# 3. IC+CF: In-context learning with collaborative filtering (hybrid approach)
# Requires cf_scores.csv from step 1
python permission_ic_cf.py

Notes:

  • Run permission_cf_only.py first to generate cf_scores.csv required by permission_ic_cf.py
  • IC-only and IC+CF require OPENAI_API_KEY in .env file
  • All results saved to results/ directory

Documentation:

Data

All data has been anonymized to protect participant privacy:

  • User Study Data: Prolific IDs replaced with anonymous participant IDs (P001-P203)
  • Queries: 65 scenarios spanning 8 domains (Health & Fitness, Finance, Shopping, Travel, etc.)
  • Responses: Participant choices for app selection, data selection, and permission preferences

Documentation:

User Study Metadata:

Research Team

Yuhao Wu (Washington University in St. Louis)
Ke Yang (University of California, Irvine)
Franziska Roesner (University of Washington)
Tadayoshi Kohno (Georgetown University)
Ning Zhang (Washington University in St. Louis)
Umar Iqbal (Washington University in St. Louis)

Citation

If you use this code or data in your research, please cite our paper:

@inproceedings{wu2026automating,
  title={{Towards Automating Data Access Permissions in AI Agents}},
  author={Wu, Yuhao and Yang, Ke and Roesner, Franziska and Kohno, Tadayoshi and Zhang, Ning and Iqbal, Umar},
  booktitle={2026 IEEE Symposium on Security and Privacy (SP)},
  pages={336--354},
  year={2026},
  organization={IEEE},
  doi={10.1109/SP63933.2026.00018},
  url={https://doi.ieeecomputersociety.org/10.1109/SP63933.2026.00018}
}

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages