-
Notifications
You must be signed in to change notification settings - Fork 162
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
152 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
#-*- coding:utf-8 -*- | ||
import tensorflow as tf | ||
from utils.utils_tool import logger | ||
|
||
from tensorflow.contrib import slim | ||
|
||
tf.app.flags.DEFINE_integer('text_scale', 512, '') | ||
|
||
from nets.resnet import resnet_v1 | ||
|
||
FLAGS = tf.app.flags.FLAGS | ||
|
||
#TODO:使用最近领还是线性插值,文章没有介绍 | ||
def unpool(inputs, rate): | ||
return tf.image.resize_bilinear(inputs, size=[tf.shape(inputs)[1]*rate, tf.shape(inputs)[2]*rate]) | ||
|
||
def mean_image_subtraction(images, means=[123.68, 116.78, 103.94]): | ||
''' | ||
image normalization | ||
:param images: | ||
:param means: | ||
:return: | ||
''' | ||
num_channels = images.get_shape().as_list()[-1] | ||
if len(means) != num_channels: | ||
raise ValueError('len(means) must match the number of channels') | ||
channels = tf.split(axis=3, num_or_size_splits=num_channels, value=images) | ||
for i in range(num_channels): | ||
channels[i] -= means[i] | ||
return tf.concat(axis=3, values=channels) | ||
|
||
def build_feature_pyramid(C, weight_decay): | ||
|
||
''' | ||
reference: https://github.com/CharlesShang/FastMaskRCNN | ||
build P2, P3, P4, P5 | ||
:return: multi-scale feature map | ||
''' | ||
|
||
feature_pyramid = {} | ||
with tf.variable_scope('build_feature_pyramid'): | ||
with slim.arg_scope([slim.conv2d], weights_regularizer=slim.l2_regularizer(weight_decay)): | ||
feature_pyramid['P5'] = slim.conv2d(C['C5'], | ||
num_outputs=256, | ||
kernel_size=[1, 1], | ||
stride=1, | ||
scope='build_P5') | ||
|
||
feature_pyramid['P6'] = slim.max_pool2d(feature_pyramid['P5'], | ||
kernel_size=[2, 2], stride=2, scope='build_P6') | ||
# P6 is down sample of P5 | ||
|
||
for layer in range(4, 1, -1): | ||
p, c = feature_pyramid['P' + str(layer + 1)], C['C' + str(layer)] | ||
up_sample_shape = tf.shape(c) | ||
up_sample = tf.image.resize_nearest_neighbor(p, [up_sample_shape[1], up_sample_shape[2]], | ||
name='build_P%d/up_sample_nearest_neighbor' % layer) | ||
|
||
c = slim.conv2d(c, num_outputs=256, kernel_size=[1, 1], stride=1, | ||
scope='build_P%d/reduce_dimension' % layer) | ||
p = up_sample + c | ||
p = slim.conv2d(p, 256, kernel_size=[3, 3], stride=1, | ||
padding='SAME', scope='build_P%d/avoid_aliasing' % layer) | ||
feature_pyramid['P' + str(layer)] = p | ||
return feature_pyramid | ||
|
||
def model(images, outputs = 6, weight_decay=1e-5, is_training=True): | ||
''' | ||
define the model, we use slim's implemention of resnet | ||
''' | ||
images = mean_image_subtraction(images) | ||
|
||
with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=weight_decay)): | ||
logits, end_points = resnet_v1.resnet_v1_50(images, is_training=is_training, scope='resnet_v1_50') | ||
|
||
#no non-linearities in FPN article | ||
feature_pyramid = build_feature_pyramid(end_points, weight_decay=weight_decay) | ||
#unpool sample P | ||
P_concat = [] | ||
for i in range(3, 1, -1): | ||
P_concat.append(unpool(feature_pyramid['P'+str(i+2)], 2**i)) | ||
P_concat.append(feature_pyramid['P2']) | ||
#F = C(P2,P3,P4,P5) | ||
F = tf.concat(P_concat, axis=-1) | ||
|
||
#reduce to 256 channels | ||
with tf.variable_scope('feature_results'): | ||
batch_norm_params = { | ||
'decay': 0.997, | ||
'epsilon': 1e-5, | ||
'scale': True, | ||
'is_training': is_training | ||
} | ||
with slim.arg_scope([slim.conv2d], | ||
activation_fn=tf.nn.relu, | ||
normalizer_fn=slim.batch_norm, | ||
normalizer_params=batch_norm_params, | ||
weights_regularizer=slim.l2_regularizer(weight_decay)): | ||
F = slim.conv2d(F, 256, 3) | ||
with slim.arg_scope([slim.conv2d], | ||
weights_regularizer=slim.l2_regularizer(weight_decay), | ||
activation_fn=None): | ||
S = slim.conv2d(F, outputs, 1) | ||
up_S = unpool(S, 4) | ||
seg_S_pred = tf.nn.sigmoid(up_S) | ||
shape_res_S = tf.shape(seg_S_pred) | ||
logger.debug(shape_res_S) | ||
|
||
return seg_S_pred | ||
|
||
def dice_coefficient(y_true_cls, y_pred_cls, | ||
training_mask): | ||
''' | ||
dice loss | ||
:param y_true_cls: ground truth | ||
:param y_pred_cls: predict | ||
:param training_mask: | ||
:return: | ||
''' | ||
eps = 1e-5 | ||
intersection = tf.reduce_sum(y_true_cls * y_pred_cls * training_mask) | ||
union = tf.reduce_sum(y_true_cls * training_mask) + tf.reduce_sum(y_pred_cls * training_mask) + eps | ||
dice = 2 * intersection / union | ||
loss = 1. - dice | ||
# tf.summary.scalar('classification_dice_loss', loss) | ||
return dice, loss | ||
|
||
def loss(y_true_cls, y_pred_cls, | ||
training_mask): | ||
g1, g2, g3, g4, g5, g6 = tf.split(value=y_true_cls, num_or_size_splits=6, axis=3) | ||
s1, s2, s3, s4, s5, s6 = tf.split(value=y_pred_cls, num_or_size_splits=6, axis=3) | ||
Gn = [g1, g2, g3, g4, g5, g6] | ||
Sn = [s1, s2, s3, s4, s5, s6] | ||
_, Lc = dice_coefficient(Gn[5], Sn[5], training_mask=training_mask) | ||
tf.summary.scalar('Lc_loss', Lc) | ||
|
||
one = tf.ones_like(Sn[5]) | ||
zero = tf.zeros_like(Sn[5]) | ||
W = tf.where(Sn[5] >= 0.5, x=one, y=zero) | ||
D = 0 | ||
for i in range(5): | ||
di, _ = dice_coefficient(Gn[i]*W, Sn[i]*W, training_mask=training_mask) | ||
D += di | ||
Ls = 1-D/5. | ||
tf.summary.scalar('Ls_loss', Ls) | ||
lambda_ = 0.7 | ||
L = lambda_*Lc + (1-lambda_)*Ls | ||
return L | ||
|
||
|
||
|
||
|