Paddle Automatically Diff precision toolkits.
- 支持单模型运行并dump相关数据
- 提供离线对齐工具
PaDiff 是基于 PaddlePaddle 与 PyTorch 的模型精度对齐工具。传入 Paddle 或 Torch 模型,对齐训练中间结果以及训练后的模型权重,并提示精度 diff 第一次出现的位置。
PaDiff v0.2 版本已发布,可通过如下命令安装:
pip install padiff
尝鲜版或开发者推荐clone源码并使用如下命令安装:
python setup.py install
from padiff import auto_diff
import torch
import paddle
class SimpleModule(torch.nn.Module):
def __init__(self):
super(SimpleModule, self).__init__()
self.linear1 = torch.nn.Linear(100, 10)
def forward(self, x):
x = self.linear1(x)
return x
class SimpleLayer(paddle.nn.Layer):
def __init__(self):
super(SimpleLayer, self).__init__()
self.linear1 = paddle.nn.Linear(100, 10)
def forward(self, x):
x = self.linear1(x)
return x
module = SimpleModule()
layer = SimpleLayer()
inp = paddle.rand((100, 100)).numpy().astype("float32")
inp = ({'x': torch.as_tensor(inp) },
{'x': paddle.to_tensor(inp)})
auto_diff(module, layer, inp, atol=1e-4, auto_init=True)
############################
# torch_model.py #
############################
from padiff import *
import torch
class SimpleModule(torch.nn.Module):
def __init__(self):
super(SimpleModule, self).__init__()
self.linear1 = torch.nn.Linear(100, 10)
def forward(self, x):
x = self.linear1(x)
return x
module = SimpleModule()
module = create_model(module)
inp = paddle.ones((100, 100)).numpy().astype("float32")
for i in range(6):
out = module(torch.as_tensor(inp))
loss = out.mean()
module.backward(loss)
module.try_dump(2, f"./torch/step_{i}")
############################
# paddle_model.py #
############################
from padiff import *
import paddle
class SimpleLayer(paddle.nn.Layer):
def __init__(self):
super(SimpleLayer, self).__init__()
self.linear1 = paddle.nn.Linear(100, 10)
def forward(self, x):
x = self.linear1(x)
return x
# 此处需自行保证两个模型的初始权重以及输入数据是对齐的
layer = SimpleLayer()
layer = create_model(layer)
inp = paddle.rand((100, 100)).numpy().astype("float32")
for i in range(6):
out = layer(paddle.to_tensor(inp))
loss = out.mean()
layer.backward(loss)
layer.try_dump(2, f"./paddle/step_{i}")
############################
# check.py #
############################
from padiff import *
for i in range(6):
if i % 2 == 0:
assert check_report(f"./torch/step_{i}", f"./paddle/step_{i}") == True
assert check_params(f"./torch/step_{i}", f"./paddle/step_{i}") == True
- MultiHeadAttention
- LSTM
- BatchNorm2D