Skip to content

lincbrain/fiber-bundle-segmentation

Repository files navigation

Fully Automated Segmentation of Fiber Bundles in Anatomic Tracing Data

About

This is a Pytorch implementation for the paper "Fully Automated Segmentation of Fiber Bundles in Anatomic Tracing Data" (CDMRI workshop, MICCAI 2025) by Kyriaki-Margarita Bintsi, Yaël Balbastre, Jingjing Wu, Julia F. Lehman, Suzanne N. Haber, and Anastasia Yendiki


Installation

Clone the repository:

git clone https://github.com/lincbrain/fiber-bundle-segmentation.git
cd your-repo

Requirements

Install dependencies:

pip install -r requirements.txt

Training

Pretraining

Pretrain the U-Net model for self-supervised reconstruction:

python pretrain.py \
    --batch_size 16 \
    --epochs 50 \
    --patch_h 1024 \
    --patch_w 1024 \
    --num_random_patches 20 \
    --dirpath ./pretraining_saved_models/

Fine-tuning

Fine-tune the U-Net model using cross-validation and optional pre-trained weights:

python train_finetune.py \
    --batch_size 8 \
    --epochs 1000 \
    --patch_h 1024 \
    --patch_w 1024 \
    --num_random_patches 20 \
    --checkpoint_dir ./finetune_checkpoints/ \
    --pretrained_checkpoint ./pretraining_saved_models/unet_pretraining.ckpt \
    --loss BCEdice

Prediction

Run inference on new images with optional test-time augmentation and small-object removal:

python predict.py \
    --input_folder ./test_images/ \
    --output_folder ./predictions/ \
    --model_folder ./finetune_checkpoints/ \
    --saved_model best \
    --min_size 20

Reference

If you find the code useful, pleace cite:

@article{bintsi2025fully,
  title={Fully Automated Segmentation of Fiber Bundles in Anatomic Tracing Data},
  author={Bintsi, Kyriaki-Margarita and Balbastre, Ya{\"e}l and Wu, Jingjing and Lehman, Julia F and Haber, Suzanne N and Yendiki, Anastasia},
  journal={arXiv preprint arXiv:2508.12942},
  year={2025}
}

About

Code for the paper "Fully Automated Segmentation of Fiber Bundles in Anatomic Tracing Data"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages