Joint multiple features in Unimodal attention model with fusion.
the dataset is structured as follow:
temp_lfw
|
|__ CK
| |__ 10 REP
| | |__ A
| | | |__ images_0.npy
| | | |__ images_1.npy
| | | |__ ...
| | |__ L
| | |__ LA
| |__ 20 REP
| |__ 30 REP
|__JAFFE
there are 3 main files:
- main.py: Script to train, validate and test with LOSO protocol and PCA
- main_noloso.py: Script to train, validate and test without LOSO protocol and PCA
- main_nopca.py: Script to train, validate and test without LOSO protocol and without PCA (using a FC layer instead).
for each main file there are env variables to be defined at the begining.
pca_size = int(os.getenv('PCA_SIZE', 150))
epochs = int(os.getenv('EPOCHS', 50))
nro_rep = int(os.getenv('NRO_REP', 10))
kind_rep = os.getenv('KIND_REP', 'L')
dataset_target = os.getenv('DATASET_TARGET', 'JAFFE')
folder_path_rep = os.getenv('FOLDER_PATH_REP', 'temp2')
Build an image using Dockerfile_pytorch
, create a container with that image and run the script python main.py
.