Tags: learnables/learn2learn
Tags
v0.1.7 ====== Added ----- * Bounding box cropping for Aircraft and CUB200. * Pretrained weights for vision models with: `l2l.vision.models.get_pretrained_backbone()`. * Add `keep_requires_grad` flag to `detach_module`. ([Zhaofeng Wu](https://github.com/ZhaofengWu)) Fixed ----- * Fix arguments when instantiating `l2l.nn.Scale`. * Fix `train_loss` logging in `LightningModule` implementations with PyTorch-Lightning 1.5. * Fix `RandomClassRotation` ([#283](#283)) to incorporate multi-channelled inputs. ([Varad Pimpalkhute](https://github.com/nightlessbaron/)) * Fix memory leak in `maml.py` and `meta-sgd.py` and add tests to `maml_test.py` and `metasgd_test.py` to check for possible future memory leaks. ([#284] (#284)) ([Kevin Zhang] (https://github.com/kzhang2))
v0.1.6 ====== Added ----- * PyTorch Lightning interface to MAML, ANIL, ProtoNet, MetaOptNet. * Automatic batcher for Lightning: `l2l.data.EpisodicBatcher`. * `l2l.nn.PrototypicalClassifier` and `l2l.nn.SVMClassifier`. * Add `l2l.vision.models.WRN28`. * Separate modules for `CNN4Backbone`, `ResNet12Backbone`, `WRN28Backbones` w/ pretrained weights. * Add `l2l.data.OnDeviceDataset` and implement `device` parameter for benchmarks. * (Beta) Add `l2l.data.partition_task` and `l2l.data.InfiniteIterator`. Changed ------- * Renamed and clarify dropout parameters for `ResNet12`. Fixed ----- * Improved support for 1D inputs in `l2l.nn.KroneckerLinear`. (@timweiland)
v0.1.4 ====== Added ----- * `FilteredMetaDatasest` filter the classes used to sample tasks. * `UnionMetaDatasest` to get the union of multiple MetaDatasets. * Alias `MiniImageNetCNN` to `CNN4` and add `embedding_size` argument. * Optional data augmentation schemes for vision benchmarks. * `l2l.vision.models.ResNet12` * `l2l.vision.datasets.DescribableTextures` * `l2l.vision.datasets.Quickdraw` * `l2l.vision.datasets.FGVCFungi` * Add `labels_to_indices` and `indices_to_labels` as optional arguments to `l2l.data.MetaDataset`. Changed ------- * Updated reference for citations.
Added ===== * `l2l.vision.datasets.CUBirds200`. Changed ------- * Optimization transforms can be accessed directly through `l2l.optim`, e.g. `l2l.optim.KroneckerTransform`. * All vision models adhere to the `.features` and `.classifier` interface. Fixed ----- * Fix `clone_module` for Modules whose submodules share parameters.
v0.1.2 ====== Added ----- * New example: [Meta-World](https://github.com/rlworkgroup/metaworld) example with MAML-TRPO with it's own env wrapper. (@[Kostis-S-Z](https://github.com/Kostis-S-Z)) * `l2l.vision.benchmarks` interface. * Differentiable optimization utilities in `l2l.optim`. (including `l2l.optim.LearnableOptimizer` for meta-descent) * General gradient-based meta-learning wrapper in `l2l.algorithms.GBML`. * Various `nn.Modules` in `l2l.nn`. * `l2l.update_module` as a more general alternative to `l2l.algorithms.maml_update`. Fixed ----- * clone_module supports non-Module objects. * VGG flowers now relies on tarfile.open() instead of tarfile.TarFile().
PreviousNext