Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions Mathlib/Analysis/NormedSpace/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,17 @@ variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace α E]

variable {F : Type*} [SeminormedAddCommGroup F] [NormedSpace α F]

theorem dist_smul_add_one_sub_smul_le [NormedSpace ℝ E] {r : ℝ} {x y : E} (h : r ∈ Icc 0 1) :
dist (r • x + (1 - r) • y) x ≤ dist y x :=
calc
dist (r • x + (1 - r) • y) x = ‖1 - r‖ * ‖x - y‖ := by
simp_rw [dist_eq_norm', ← norm_smul, sub_smul, one_smul, smul_sub, ← sub_sub, ← sub_add,
sub_right_comm]
_ = (1 - r) * dist y x := by
rw [Real.norm_eq_abs, abs_eq_self.mpr (sub_nonneg.mpr h.2), dist_eq_norm']
_ ≤ (1 - 0) * dist y x := by gcongr; exact h.1
_ = dist y x := by rw [sub_zero, one_mul]

theorem eventually_nhds_norm_smul_sub_lt (c : α) (x : E) {ε : ℝ} (h : 0 < ε) :
∀ᶠ y in 𝓝 x, ‖c • (y - x)‖ < ε :=
have : Tendsto (fun y => ‖c • (y - x)‖) (𝓝 x) (𝓝 0) :=
Expand Down