Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions Mathlib/Analysis/Analytic/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -79,9 +79,9 @@ open Topology NNReal Filter ENNReal Set Asymptotics

namespace FormalMultilinearSeries

variable [Ring 𝕜] [AddCommGroup E] [AddCommGroup F] [Module 𝕜 E] [Module 𝕜 F]
variable [Semiring 𝕜] [AddCommMonoid E] [AddCommMonoid F] [Module 𝕜 E] [Module 𝕜 F]
variable [TopologicalSpace E] [TopologicalSpace F]
variable [IsTopologicalAddGroup E] [IsTopologicalAddGroup F]
variable [ContinuousAdd E] [ContinuousAdd F]
variable [ContinuousConstSMul 𝕜 E] [ContinuousConstSMul 𝕜 F]

/-- Given a formal multilinear series `p` and a vector `x`, then `p.sum x` is the sum `Σ pₙ xⁿ`. A
Expand Down
56 changes: 33 additions & 23 deletions Mathlib/Analysis/Calculus/FormalMultilinearSeries.lean
Original file line number Diff line number Diff line change
Expand Up @@ -33,23 +33,23 @@ variable {𝕜 : Type u} {𝕜' : Type u'} {E : Type v} {F : Type w} {G : Type x

section

variable [Ring 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [IsTopologicalAddGroup E]
[ContinuousConstSMul 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [TopologicalSpace F]
[IsTopologicalAddGroup F] [ContinuousConstSMul 𝕜 F] [AddCommGroup G] [Module 𝕜 G]
[TopologicalSpace G] [IsTopologicalAddGroup G] [ContinuousConstSMul 𝕜 G]
variable [Semiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] [TopologicalSpace E] [ContinuousAdd E]
[ContinuousConstSMul 𝕜 E] [AddCommMonoid F] [Module 𝕜 F] [TopologicalSpace F]
[ContinuousAdd F] [ContinuousConstSMul 𝕜 F] [AddCommMonoid G] [Module 𝕜 G]
[TopologicalSpace G] [ContinuousAdd G] [ContinuousConstSMul 𝕜 G]

/-- A formal multilinear series over a field `𝕜`, from `E` to `F`, is given by a family of
multilinear maps from `E^n` to `F` for all `n`. -/
@[nolint unusedArguments]
def FormalMultilinearSeries (𝕜 : Type*) (E : Type*) (F : Type*) [Ring 𝕜] [AddCommGroup E]
[Module 𝕜 E] [TopologicalSpace E] [IsTopologicalAddGroup E] [ContinuousConstSMul 𝕜 E]
[AddCommGroup F] [Module 𝕜 F] [TopologicalSpace F] [IsTopologicalAddGroup F]
def FormalMultilinearSeries (𝕜 : Type*) (E : Type*) (F : Type*) [Semiring 𝕜] [AddCommMonoid E]
[Module 𝕜 E] [TopologicalSpace E] [ContinuousAdd E] [ContinuousConstSMul 𝕜 E]
[AddCommMonoid F] [Module 𝕜 F] [TopologicalSpace F] [ContinuousAdd F]
[ContinuousConstSMul 𝕜 F] :=
∀ n : ℕ, E[×n]→L[𝕜] F

-- Porting note: was `deriving`
instance : AddCommGroup (FormalMultilinearSeries 𝕜 E F) :=
inferInstanceAs <| AddCommGroup <| ∀ n : ℕ, E[×n]→L[𝕜] F
instance : AddCommMonoid (FormalMultilinearSeries 𝕜 E F) :=
inferInstanceAs <| AddCommMonoid <| ∀ n : ℕ, E[×n]→L[𝕜] F

instance : Inhabited (FormalMultilinearSeries 𝕜 E F) :=
⟨0⟩
Expand All @@ -69,15 +69,9 @@ the `simpNF` linter incorrectly claims this lemma can't be applied by `simp`. -/
@[simp, nolint simpNF]
theorem zero_apply (n : ℕ) : (0 : FormalMultilinearSeries 𝕜 E F) n = 0 := rfl

@[simp]
theorem neg_apply (f : FormalMultilinearSeries 𝕜 E F) (n : ℕ) : (-f) n = - f n := rfl

@[simp]
theorem add_apply (p q : FormalMultilinearSeries 𝕜 E F) (n : ℕ) : (p + q) n = p n + q n := rfl

@[simp]
theorem sub_apply (p q : FormalMultilinearSeries 𝕜 E F) (n : ℕ) : (p - q) n = p n - q n := rfl

@[simp]
theorem smul_apply [Semiring 𝕜'] [Module 𝕜' F] [ContinuousConstSMul 𝕜' F] [SMulCommClass 𝕜 𝕜' F]
(f : FormalMultilinearSeries 𝕜 E F) (n : ℕ) (a : 𝕜') : (a • f) n = a • f n := rfl
Expand Down Expand Up @@ -146,7 +140,7 @@ theorem compContinuousLinearMap_apply (p : FormalMultilinearSeries 𝕜 F G) (u
(v : Fin n → E) : (p.compContinuousLinearMap u) n v = p n (u ∘ v) :=
rfl

variable (𝕜) [Ring 𝕜'] [SMul 𝕜 𝕜']
variable (𝕜) [Semiring 𝕜'] [SMul 𝕜 𝕜']
variable [Module 𝕜' E] [ContinuousConstSMul 𝕜' E] [IsScalarTower 𝕜 𝕜' E]
variable [Module 𝕜' F] [ContinuousConstSMul 𝕜' F] [IsScalarTower 𝕜 𝕜' F]

Expand All @@ -159,6 +153,22 @@ end FormalMultilinearSeries

end

namespace FormalMultilinearSeries
variable [Ring 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [IsTopologicalAddGroup E]
[ContinuousConstSMul 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [TopologicalSpace F]
[IsTopologicalAddGroup F] [ContinuousConstSMul 𝕜 F]

instance : AddCommGroup (FormalMultilinearSeries 𝕜 E F) :=
inferInstanceAs <| AddCommGroup <| ∀ n : ℕ, E[×n]→L[𝕜] F

@[simp]
theorem neg_apply (f : FormalMultilinearSeries 𝕜 E F) (n : ℕ) : (-f) n = - f n := rfl

@[simp]
theorem sub_apply (f g : FormalMultilinearSeries 𝕜 E F) (n : ℕ) : (f - g) n = f n - g n := rfl

end FormalMultilinearSeries

namespace FormalMultilinearSeries

variable [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F]
Expand Down Expand Up @@ -190,10 +200,10 @@ end FormalMultilinearSeries

section

variable [Ring 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [IsTopologicalAddGroup E]
[ContinuousConstSMul 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [TopologicalSpace F]
[IsTopologicalAddGroup F] [ContinuousConstSMul 𝕜 F] [AddCommGroup G] [Module 𝕜 G]
[TopologicalSpace G] [IsTopologicalAddGroup G] [ContinuousConstSMul 𝕜 G]
variable [Semiring 𝕜] [AddCommMonoid E] [Module 𝕜 E] [TopologicalSpace E] [ContinuousAdd E]
[ContinuousConstSMul 𝕜 E] [AddCommMonoid F] [Module 𝕜 F] [TopologicalSpace F]
[ContinuousAdd F] [ContinuousConstSMul 𝕜 F] [AddCommMonoid G] [Module 𝕜 G]
[TopologicalSpace G] [ContinuousAdd G] [ContinuousConstSMul 𝕜 G]

namespace ContinuousLinearMap

Expand Down Expand Up @@ -235,9 +245,9 @@ namespace FormalMultilinearSeries

section Order

variable [Ring 𝕜] {n : ℕ} [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E]
[IsTopologicalAddGroup E] [ContinuousConstSMul 𝕜 E] [AddCommGroup F] [Module 𝕜 F]
[TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousConstSMul 𝕜 F]
variable [Semiring 𝕜] {n : ℕ} [AddCommMonoid E] [Module 𝕜 E] [TopologicalSpace E]
[ContinuousAdd E] [ContinuousConstSMul 𝕜 E] [AddCommMonoid F] [Module 𝕜 F]
[TopologicalSpace F] [ContinuousAdd F] [ContinuousConstSMul 𝕜 F]
{p : FormalMultilinearSeries 𝕜 E F}

/-- The index of the first non-zero coefficient in `p` (or `0` if all coefficients are zero). This
Expand Down