feat(Topology/Category): the standard Grothendieck topology on TopCat#34979
feat(Topology/Category): the standard Grothendieck topology on TopCat#34979chrisflav wants to merge 4 commits intoleanprover-community:masterfrom
TopCat#34979Conversation
TopCatTopCat
PR summary 8115783e28
|
| File | Base Count | Head Count | Change |
|---|---|---|---|
| Mathlib.CategoryTheory.Sites.JointlySurjective | 602 | 604 | +2 (+0.33%) |
Import changes for all files
| Files | Import difference |
|---|---|
Mathlib.CategoryTheory.Sites.JointlySurjective |
2 |
Mathlib.Topology.Category.TopCat.GrothendieckTopology (new file) |
923 |
Declarations diff
+ IsStableUnderBaseChange.of_forall_exists_isPullback
+ IsStableUnderCobaseChange.of_forall_exists_isPullback
+ Small.inf
+ Topology.IsClosedEmbedding.uliftMap
+ Topology.IsEmbedding.uliftMap
+ Topology.IsOpenEmbedding.uliftMap
+ exists_mem_zeroHypercover_range
+ grothendieckTopology
+ instance : Precoverage.Small.{u} jointlySurjectivePrecoverage.{u}
+ instance : Precoverage.Small.{u} precoverage.{u}
+ instance : isOpenEmbedding.IsMultiplicative
+ instance : isOpenEmbedding.IsStableUnderBaseChange
+ instance : isOpenEmbedding.RespectsIso
+ instance {D : Type*} [Category* D] {F : C ⥤ D} (J : Precoverage D) [Small.{w} J] :
+ isOpenEmbedding
+ isOpenEmbedding_f_zeroHypercover
+ isOpenEmbedding_iff
+ precoverage
+ subcanonical_grothendieckTopology
+ toHomeomorph_symm_apply
You can run this locally as follows
## summary with just the declaration names:
./scripts/declarations_diff.sh <optional_commit>
## more verbose report:
./scripts/declarations_diff.sh long <optional_commit>The doc-module for script/declarations_diff.sh contains some details about this script.
No changes to technical debt.
You can run this locally as
./scripts/technical-debt-metrics.sh pr_summary
- The
relativevalue is the weighted sum of the differences with weight given by the inverse of the current value of the statistic. - The
absolutevalue is therelativevalue divided by the total sum of the inverses of the current values (i.e. the weighted average of the differences).
|
Thanks for the reviews @joelriou, @peabrainiac! |
TopCatTopCat
We define the Grothendieck topology generated by families of jointly surjective open embeddings on
TopCatand show it is subcanonical. This will be used to show that for a topological spaceT, the presheafU ↦ C(U, T)onSchemeis a Zariski-sheaf.Co-authored by: Edward van de Meent edwardvdmeent@gmail.com
From Proetale.