Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 2e46b07

Browse files
committed
reduce diff
1 parent 6e08817 commit 2e46b07

File tree

1 file changed

+7
-21
lines changed

1 file changed

+7
-21
lines changed

src/algebra/field/opposite.lean

Lines changed: 7 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -16,13 +16,15 @@ import data.int.cast.lemmas
1616

1717
open_locale nnrat
1818

19-
variables {α : Type*}
19+
variables (α : Type*)
2020

2121
namespace mul_opposite
2222

2323
@[to_additive] instance [has_nnrat_cast α] : has_nnrat_cast αᵐᵒᵖ := ⟨λ n, op n⟩
2424
@[to_additive] instance [has_rat_cast α] : has_rat_cast αᵐᵒᵖ := ⟨λ n, op n⟩
2525

26+
variables {α}
27+
2628
@[simp, norm_cast, to_additive]
2729
lemma op_nnrat_cast [has_nnrat_cast α] (q : ℚ≥0) : op (q : α) = q := rfl
2830

@@ -35,18 +37,6 @@ lemma op_rat_cast [has_rat_cast α] (q : ℚ) : op (q : α) = q := rfl
3537
@[simp, norm_cast, to_additive]
3638
lemma unop_rat_cast [has_rat_cast α] (q : ℚ) : unop (q : αᵐᵒᵖ) = q := rfl
3739

38-
namespace mul_opposite
39-
40-
@[to_additive] instance [has_rat_cast α] : has_rat_cast αᵐᵒᵖ := ⟨λ n, op n⟩
41-
42-
variables {α}
43-
44-
@[simp, norm_cast, to_additive]
45-
lemma op_rat_cast [has_rat_cast α] (q : ℚ) : op (q : α) = q := rfl
46-
47-
@[simp, norm_cast, to_additive]
48-
lemma unop_rat_cast [has_rat_cast α] (q : ℚ) : unop (q : αᵐᵒᵖ) = q := rfl
49-
5040
variables (α)
5141

5242
instance [division_semiring α] : division_semiring αᵐᵒᵖ :=
@@ -62,14 +52,10 @@ instance [division_ring α] : division_ring αᵐᵒᵖ :=
6252
..mul_opposite.division_semiring α, ..mul_opposite.ring α }
6353

6454
instance [semifield α] : semifield αᵐᵒᵖ :=
65-
{ ..mul_opposite.division_semiring, ..mul_opposite.comm_semiring α }
55+
{ .. mul_opposite.division_semiring α, .. mul_opposite.comm_semiring α }
6656

6757
instance [field α] : field αᵐᵒᵖ :=
68-
{ ..mul_opposite.division_ring, ..mul_opposite.comm_ring α }
69-
70-
end mul_opposite
71-
72-
namespace add_opposite
58+
{ .. mul_opposite.division_ring α, .. mul_opposite.comm_ring α }
7359

7460
end mul_opposite
7561

@@ -78,7 +64,7 @@ namespace add_opposite
7864
instance [division_semiring α] : division_semiring αᵃᵒᵖ :=
7965
{ nnrat_cast := λ q, op q,
8066
nnrat_cast_eq := λ q, by { rw [nnrat.cast_def, op_div, op_nat_cast, op_nat_cast] },
81-
..add_opposite.group_with_zero α, ..add_opposite.semiring α, ..add_opposite.has_nnrat_cast }
67+
..add_opposite.group_with_zero α, ..add_opposite.semiring α, ..add_opposite.has_nnrat_cast α }
8268

8369
instance [division_ring α] : division_ring αᵃᵒᵖ :=
8470
{ nnrat_cast := coe,
@@ -88,7 +74,7 @@ instance [division_ring α] : division_ring αᵃᵒᵖ :=
8874
..add_opposite.group_with_zero α, ..add_opposite.ring α }
8975

9076
instance [semifield α] : semifield αᵃᵒᵖ :=
91-
{ ..add_opposite.division_semiring, ..add_opposite.comm_semiring α }
77+
{ ..add_opposite.division_semiring α, ..add_opposite.comm_semiring α }
9278

9379
instance [field α] : field αᵃᵒᵖ :=
9480
{ ..add_opposite.division_ring α, ..add_opposite.comm_ring α }

0 commit comments

Comments
 (0)